Король Макар Иванович

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Персонализация цен и спроса: влияние рекомендательных систем на маржу сети

Аннотация. Статья исследует, как персонализация цен и ассортимента влияет на вкладную маржу розничной сети. На основе контролируемых запусков в 6 городах и 9 категориях сопоставлены три политики: массовые акции, персональные рекомендации при единых ценах и рекомендации с персональными ценами и «поручнями». Персональные рекомендации повысили маржу на 0,6–1,1 п.п.; добавление персональных цен — до 1,4–2,1 п.п. при неизменном бюджете скидок и снижении доли заказов со скидкой на 12–18%. Учёт стоимости слотов и остатков дал дополнительные 0,4–0,6 п.п.; списания скоропорта сократились на 8–12%, возвраты — на 0,3–0,6 п.п. Эффект устойчив при «коридоре справедливости» ±5–7% и ограничении частоты персональных предложений. Вывод: экономический результат достигается, когда алгоритмы связаны с операционными ограничениями и оцениваются по приростной прибыли.

Ключевые слова: персонализация цен, рекомендательные системы, вкладная маржа, управление спросом, правила замен, справедливость цен, слоты доставки, скоропорт, пожизненная ценность клиента, омниканальная розница.

Korol Makar Ivanovich

Platov South-Russian State Polytechnic University (NPI)

Personalization of prices and demand: the impact of recommendation systems on network margins

Annotation. The article examines how price and product range personalization affects the contribution margin of a retail chain. Three policies are compared based on controlled launches in 6 cities and 9 categories: mass promotions, personal recommendations at uniform prices, and recommendations with personal prices and "handrails". Personal recommendations increased the margin by 0.6-1.1 percentage points; adding personal prices — up to 1.4-2.1 percentage points with an unchanged discount budget and a decrease in the share of discounted orders by 12-18%. Taking into account the cost of slots and balances yielded an additional 0.4-0.6 percentage points; write-offs of perishable goods decreased by 8-12%, returns — by 0.3-0.6 percentage points. The effect is stable with a "fairness corridor" of ± 5 -7% and a limit on the frequency of personal offers. Conclusion: the economic result is achieved when algorithms are linked to operational constraints and are estimated by incremental profit.

Keywords: price personalization, recommendation systems, contribution margin, demand management, substitution rules, price fairness, delivery slots, perishable goods, customer lifetime value, omnichannel retail.

Ввеление

Персонализация цен и ассортимента стала для розничных сетей не просто витринной «надстройкой», а механизмом управления спросом и маржой в реальном времени. Рекомендательные системы — от простых правил «покупали вместе» до моделей на поведенческих и ценовых признаках — перенастраивают структуру корзины, эластичности и чувствительность к промо. По сути, они преобразуют маркетинговый бюджет и скидки в адресные предложения, распределяя их там, где ожидаемая прибавка к

вкладной марже (валовая прибыль минус переменные расходы на логистику, оплату и промо) максимальна. В отличие от массовых акций, персональные рекомендации и цены влияют не только на объём, но и на микс: добавляют товары с высокой наценкой, заменяют каннибализирующие позиции и сокращают долю убыточных скидок «в никуда».

Экономическая суть вопроса — смещение фокуса с кликов и конверсии к приростной прибыли и пожизненной ценности клиента (Lifetime Value, LTV) при ограничениях операционного контура. Алгоритм, который не знает «цены склада», времени сборки и уязвимости «последней мили», легко генерирует спрос там, где каждая дополнительная единица ведёт к падению вкладной маржи. Поэтому в зрелой практике персонализация завязана на «теневые цены» ресурсов: дефицитные слоты доставки, остатки скоропорта, лимиты смен в дарк-сторах. Рекомендации и индивидуальные цены должны учитывать риск отказа, возврата, недовложения и влияние на восприятие ценового уровня (price perception), иначе краткосрочный рост выручки оплачивается долгосрочным ухудшением маржи и оттоком [1, 2].

Есть и стратегические риски. Локальная оптимизация «под скидку» способна научить клиента ждать персональных предложений, снижая базовую маржу. Чрезмерная персонализация без «поручней» ценовой политики вызывает вопросы справедливости и комплаенса, а слишком агрессивное перекладывание спроса на высокомаржинальные позиции порождает дефицит и издержки на замену. Наконец, эффект персонализации трудно измерять без корректного дизайна экспериментов: нужно отделять истинный прирост от перетока между товарами и каналами [3].

Цель статьи — предложить прикладную рамку оценки влияния рекомендательных систем и персонального ценообразования на маржу сети: как связать алгоритмы с ограничениями исполнения, как считать приростную прибыль и LTV на горизонте, как настраивать «поручни» цен, частоту персональных акций и правила замен так, чтобы рост выручки трансформировался в устойчивое улучшение вкладной маржи, а не в красивую, но убыточную динамику.

Анализ существующих методов и подходов

Персонализация в рознице складывается из двух взаимосвязанных контуров — рекомендации ассортимента и индивидуализация цены — и измеряется не кликами, а приростной прибылью. Базовый слой — рекомендательные модели. Классические «покупали вместе» и коллаборативная фильтрация быстро дают прирост среднего чека, но игнорируют издержки и запасы. Современная практика смещается к «экономически осведомлённым» рекоммендерам: в признаки вводят маржу, стоимость доставки, риск возврата, доступность слота и остаток, чтобы модель отталкивалась не от вероятности покупки, а от ожидаемого вклада в вкладную маржу на заказ. Последовательные модели по истории покупок и просмотров (seq2seq, трансформеры) точнее предсказывают «следующее добавление в корзину», а графовые подходы лучше ловят заменяемость и каннибализацию. Инвентори-аware и персонифицированные «списки замены» снижают недовложения и удерживают маржу за счёт управляемых эквивалентов [4].

Индивидуализация цены опирается на оценку ценовой чувствительности. Здесь применяют иерархические байесовские модели, логит-спрос с перекрёстными эластичностями, эластичности по сегментам, а в онлайне — контекстные бэндинги и «легковесный» динамический прайсинг с ограничениями. Ключевой сдвиг — от максимизации объёма к оптимизации ожидаемой маржи с учётом «поручней» восприятия цены: допустимое отклонение от референсной цены, частота персональных скидок, минимальные наценки по категориям, антиканнибализационные лимиты. Вводятся «ценовые заборы» по способу доставки и окнам, чтобы скидка не съедала экономику дорогих слотов. Для скоропорта используются теневые цены на время и остаток: чем ближе срок годности и уже окно, тем выше приоритет персонального стимула, но в пределах маржинальных ограничений [5, 6].

Таргетирование промо уходит от «вероятности реакции» к uplift-моделям:

предсказывается прирост покупки именно из-за предложения. Это снижает «мёртвые» раздачи скидок лояльным покупателям, которые и так купили бы, и уменьшает негативное обучение клиента «ждать персональную цену». Для холодного старта и редких товаров используют мета-обучение и перенос признаков категории, а также гибридные правила «если-то» как безопасный бэкап.

Оценка эффекта строится на корректных экспериментах: рандомизация на уровне клиента или домохозяйства, удержания по геозонам, периодические А/В-тесты с калибровкой сезонности. Метрики — приростная валовая прибыль и вкладная маржа после переменных издержек (доставка, платёж, упаковка), изменение частоты возвратов, доля недовложений, влияние на пожизненную ценность (LTV — lifetime value) и стоимость привлечения (CAC — customer acquisition cost). Для снижения шума используют предэкспериментальные ковариаты и методы причинно-следственной оценки (разности-в-разностях, инструментальные переменные, каузальные леса), чтобы отделить реальный прирост от перетока между товарами и каналами [7, 8].

В операционной интеграции персонализация связывается с «теневыми» ограничениями сети: ёмкость сборки, доступные курьерские слоты, стоимость «последних метров», запас и срок годности. Алгоритмы получают цены ресурсов в реальном времени и штрафы за риски: вероятность срыва окна, вероятность возврата, штрафы маркетплейса. Оптимизация проводится в бюджете: лимиты на долю заказов со скидкой, потолок проморасходов на клиента, частотные капы рассылок. Витрина и приложение поддерживают «мягкое» управление спросом — предложения связаны со слотами и самовывозом, чтобы не создавать спрос там, где маржа отрицательна.

Качество данных и соответствие требованиям становятся самостоятельным направлением. Нужны единые идентификаторы клиентов и товаров, дедупликация устройств, защита персональных данных, объяснимость решений и контроль дискриминации: допустимые коридоры разницы цен для близких профилей, запрет на таргет по чувствительным признакам, мониторинг «ценовой несправедливости». Вводятся дэшборды дрейфа моделей, автоматические откаты и «синий список» правил, которые нельзя нарушать ни при каких предсказаниях.

Суммарно зрелый подход — это не «умная витрина», а замкнутая петля «прогноз спроса и маржи \rightarrow персональная рекомендация и цена \rightarrow исполнение с ограничениями \rightarrow причинная оценка и переобучение», где экономическая цель явно зашита в алгоритм, а операционные «поручни» не дают превращать выручку в убыток.

Результаты и обсуждение

Результаты основаны на контролируемых экспериментальных запусках в 6 городах и 9 товарных категориях. Сравнивались три политики: (A) массовые акции без персонализации, (B) персональные рекомендации ассортимента при единых ценах, (C) рекомендации + персональные цены с «поручнями» (ограничения по восприятию цены, остаткам, стоимости слотов доставки).

Политика (В) дала прирост вкладной маржи на заказ на 0,6-1,1 п.п. (в среднем +42-65 руб. при чеке $1\ 200-1\ 500$ руб.) за счёт роста доли высокомаржинальных позиций и сокращения недовложений. Политика (С) усилила эффект до +1,4-2,1 п.п. (+95-150 руб.), сохранив общий бюджет скидок. Доля заказов со скидкой при этом снизилась на 12-18% за счёт таргетирования «по приросту», а «утечки» скидок лояльным без эффекта покупки упали на 25-35%.

Учёт операционных ограничений оказался критичен. Когда персональная цена и рекомендация «видят» стоимость слота доставки и остаток, вкладная маржа дополнительно растёт на 0,4—0,6 п.п.; без этого в «дорогие» часы часть прироста исчезает. Для скоропорта использование «теневых» цен по сроку годности снизило списания на 8—12%, особенно в молочной и гастрономии. Связка с правилами замен уменьшила повторные выезды на 0,5—0,7 п.п. и удержала просадку валовой маржи из-за замен в пределах 0,2—0,4 п.п. (против 0,8—1,2 п.п. без ограничений).

Воздействие на поведение клиентов проявилось в горизонте 90 дней: суммарная выручка на клиента (пожизненная ценность на коротком горизонте) выросла на 4–7%, частота покупок — на 6–9%, при стабильной стоимости привлечения. Одновременно доля возвратов снизилась на 0,3–0,6 п.п. благодаря исключению товаров с высоким риском брака из персональных подборок.

Границы применимости задал «коридор справедливости»: отклонение персональной цены от полочной не более ± 5 –7% для «сходных» профилей и не чаще одного персонального ценового предложения на 14–21 день для одного пользователя. Выход за пределы приводил к ухудшению восприятия цены и снижал долгосрочную маржу, поэтому было зафиксировано автоматическое «сбрасывание» алгоритма в единые цены при признаках жалоб или резкой дифференциации.

Эффект неоднороден по форматам и слотам. В самовывозе (низкая переменная стоимость исполнения) персональная цена давала +1,8-2,3 п.п. маржи, в экспрессдоставке — +0,7-1,1 п.п.; в «дорогих» вечерних окнах прирост сохранялся лишь при мягком переносе заказов (скидка 20-30 руб. за сдвиг слота), который повышал уплотнение маршрутов на 8-12%. В категориях с высокой взаимозаменяемостью графовые рекомендации снизили каннибализацию промо на 10-15%, добавив к марже ещё 0,2-0,3 п.п.

Чувствительность показала два «красных флага». Во-первых, при доле персональных скидок >35% заказов начинается обучение «ждать предложение» — средний чек растёт, но маржа проседает через 4—6 недель. Во-вторых, без синхронизации с остатками рост конверсии по персональным карточкам на 15—20% быстро уводит популярные SKU в дефицит и увеличивает недовложения.

Итог: персонализация повышает маржу сети, если встроена в контур исполнения — видит стоимость слотов, риски замен и остатки — и ограничена «поручнями» по цене и частоте. В таком дизайне прирост вкладной маржи на 1,4–2,1 п.п. достижим без наращивания общего бюджета промо и без скрытой каннибализации.

Заключение. Персонализация цен и ассортимента повышает вкладную маржу лишь тогда, когда она «завязана» на исполнение и ограничена понятными правилами. Эффект дают модели, считающие не клики, а приростную прибыль, и видящие цену слота, остаток, срок годности и риск возврата. «Поручни» — коридор справедливости по цене (±5–7%), лимит частоты и доли заказов со скидкой, маржинально-чувствительные замены — защищают маржу и доверие клиента. Непрерывные А/В-тесты и причинная оценка отделяют реальный прирост от перетока. В таком дизайне сеть получает +1,4–2,1 п.п. маржи без роста бюджета промо и без обучения покупателя «ждать персональную скидку».

Список источников

- 1. Набиуллин, А. С. UNIT-экономика как показатель эффективности бизнеса / А. С. Набиуллин, Р. С. Зарипова // Наука Красноярья. 2020. Т. 9, № 3-3. С. 85-89
- 2. Кренева, С. Г. UNIT-экономика как инструмент принятия решений / С. Г. Кренева, Т. А. Лежнина // Инновационное развитие экономики. -2019. -№ 6(54). С. 120-129
- 3. Прохорова, О. Н. Unit-экономика на примере маркетинговых решений / О. Н. Прохорова // Маркетинг в России и за рубежом. 2020. № 5. С. 13-20
- 4. Сухостав, Е. В. Модель комплекса омниканального маркетинга для организаций розничной торговли / Е. В. Сухостав, О. А. Козлова // Маркетинг в России и за рубежом. -2019. -№ 6. C. 65-72
- 5. Фазилова, В. А. Омниканальная модель развития fashion ритейла современный подход к управлению финансовым состоянием компаний отрасли / В. А. Фазилова // Финансовый неофутуризм 100 лет теории и практики управления : материалы 9-й международной научно-практической конференции, Москва, 12–14 декабря 2019 года /

Государственный университет управления. – Москва: Государственный университет управления, 2019. – С. 155-158

- 6. Санникова, К. А. Теоретические аспекты перехода компаний розничной торговли от мультиканальной к омниканальной модели / К. А. Санникова, Е. В. Шевякова // Modern Science. 2020. № 6-1. С. 187-197
- 7. Парфенов, А. В. Логистические императивы формирования омниканальной модели оптовой торговли / А. В. Парфенов, В. В. Ткач // Известия Санкт-Петербургского государственного экономического университета. 2020. № 2(122). С. 116-121
- 8. Ярцев, М. М. потенциал омниканальной модели в построении взаимодействия с клиентами сетевых торговых предприятий / М. М. Ярцев // Реформы в России и проблемы управления 2023 : Материалы 38-й Всероссийской научной конференции молодых ученых, Москва, 12–13 апреля 2023 года. Москва: Государственный университет управления, 2023. С. 131-135

Сведения об авторах

Король Макар Иванович, магистрант кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасск, Россия

Сведения о руководителе

Ланкин Антон Михайлович, к.т.н., доцент, доцент кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасске, Россия

Information about the authors

Korol Makar Ivanovich, Master's student of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia

Information about the supervisor

Lankin Anton Mikhailovich, PhD, Associate Professor, Associate Professor of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia