Никитенко Михаил Артемович

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Бизнес-процессы операторов сетей: модель доходов при интеграции ВИЭ

Аннотация. Статья рассматривает трансформацию модели доходов операторов сетей при высокой доле возобновляемых источников энергии (ВИЭ). Предлагается связная рамка «бизнес-процессы → денежные потоки → стимулы», увязывающая регулирование по совокупным издержкам (ТОТЕХ) и стимулирование по результатам с операционными практиками: гибкими присоединениями, локальными закупками гибкости и тарифными сигналами «место - время». База результатов — сравнительное моделирование узлов распределительных сетей (доля ВИЭ 30–60%), эксперименты на цифровом двойнике фидера и анализ пилотных программ. Показано, что доход, привязанный к устранению узких мест и КРІ (SAIDI/SAIFI, потери, сроки присоединения), снижает потребность в «перестраховочном» САРЕХ и ускоряет ввод ВИЭ без раздувания тарифной базы. Критичны корректная М&V, киберустойчивость, координация ТЅО–DЅО и единый реестр ресурсов. Даны практические рекомендации по масштабированию.

Ключевые слова: модель доходов операторов сетей; возобновляемые источники энергии (ВИЭ); узловые цены; локальные рынки гибкости; DER/агрегация; кооптимизация; CoDF; киберустойчивость; цифровой двойник сети.

Nikitenko Mikhail Artemovich

Platov South-Russian State Polytechnic University (NPI)

Business processes of network operators: revenue model for RES integration

Annotation. The article considers the transformation of the network operators' income model with a high share of renewable energy sources (RES). A coherent framework "business processes → cash flows → incentives" is proposed, linking regulation based on total costs (TOTEX) and incentives based on results with operational practices: flexible connections, local flexibility purchases and "place-time" tariff signals. The results are based on comparative modeling of distribution network nodes (RES share of 30–60%), experiments on a digital twin of a feeder and analysis of pilot programs. It is shown that income linked to the elimination of bottlenecks and KPIs (SAIDI/SAIFI, losses, connection times) reduces the need for "reinsurance" CAPEX and accelerates the introduction of RES without inflating the tariff base. Correct M&V, cyber resilience, TSO–DSO coordination and a unified resource register are critical. Practical recommendations for scaling are given.

Keywords: grid operator revenue model; renewable energy sources (RES); nodal pricing; local flexibility markets; DER/aggregation; co-optimization; CoDF; cyber resilience; digital network twin.

Введение

Быстрый рост возобновляемых источников энергии (ВИЭ), электрификации и активных потребителей (prosumers) радикально меняет профиль потоков энергии и рисков в сетях. Для операторов магистральных и распределительных сетей это означает не только

новые требования к планированию и управлению перегрузками, но и необходимость пересмотра модели доходов и связанных с ней бизнес-процессов. Исторически выручка сетей формировалась как регулируемая доходность на инвестированный капитал (RAB), где САРЕХ служил главным «носителем» эффективности. В условиях распределённой генерации и вариативной нагрузки такой подход начинает уступать место логике ТОТЕХ-регулирования и output-based стимулов, когда вознаграждается не сам объём вложений, а достигнутый результат: надёжность (SAIDI/SAIFI), потери, подключение ВИЭ в срок, устойчивость к нештатным режимам и киберугрозам, а также доказанная экономия за счёт «несетевых» альтернатив (non-wires alternatives, NWA).

Параллельно эволюционирует операционная модель. К классическому циклу «долгосрочное планирование — строительство — эксплуатация» добавляются процессы закупки гибкости у сторонних ресурсов (DER, накопители, спросо-реагирование), цифровой координации с системным оператором (TSO–DSO) и управления данными как инфраструктурным активом. Возникают новые продукты — гибкие технические присоединения, контракты на управление перегрузками, локальные аукционы напряжения и реактивной мощности. Это требует перестройки контуров М&V, прозрачных правил компенсации ограничения генерации (curtailment) и пересмотра тарифных сигналов: от чисто объёмных тарифов — к мощностным, временным и локальным компонентам, отражающим реальную «стоимость места и часа» в сети [1, 2].

Цель статьи — предложить связную рамку «бизнес-процессы → денежные потоки → стимулы» для операторов сетей при интеграции ВИЭ. Основные задачи: картирование ключевых процессов (планирование, присоединение, управление перегрузками, закупка гибкости, данные и кибербезопасность) в источники выручки и допустимые расходы при разных режимах регулирования (RAB, TOTEX, performance-based); описание наборов метрик, через которые регулятор и рынок «переносят» ценность гибкости в тариф; обсуждение дизайна договоров и тарифных опций (shallow/shallowish присоединение, оплату за доступность гибкости, компенсации curtailment) и их влияние на риск-профиль оператора; формирование практических рекомендаций по поэтапной трансформации: от пилотов локальных рынков к масштабируемой модели доходов, в которой инвестиции в цифровизацию, NWA и координацию с DER окупаются предсказуемо и прозрачно. Такая рамка позволяет совместить задачи декарбонизации с финансовой устойчивостью сетей и снизить совокупные издержки энергоперехода для конечных потребителей.

Анализ существующих методов и подходов

Преобразование моделей операторов сетей доходов при интеграции возобновляемых источников энергии идёт по нескольким траекториям, каждая из которых меняет как внутренние бизнес-процессы, так и распределение рисков между оператором, генераторами и потребителями. Базовая линия — переход от капиталоцентричного RAB к регулированию по совокупным издержкам (ТОТЕХ) и стимулированию по результатам (performance-based). В этой логике цифровизация, управление перегрузками через гибкость и «несетевые» альтернативы рассматриваются как полноправные способы достижения регуляторных целей, а не как «накладные» расходы. Практика показывает, что устойчивый эффект достигается, когда вместе с ТОТЕХ вводится корректно откалиброванная доля «награды/штрафа» за отклонение от контрольного уровня затрат и качественных показателей: оператор получает стимул выбирать наименее дорогую комбинацию инвестиций и операционных решений, не ухудшая надёжность и доступность сети [3, 4].

Существенным элементом стала реформа правил технологического присоединения. От глубокой модели «плати за всё усиление» многие регуляторы переходят к «мелкому» или «полумелкому» подключению: инвестор покрывает локальные работы на стороне присоединения, а системные усиления финансируются через тарифы с последующим выравниванием. Это снижает барьеры входа для проектов ВИЭ и перераспределяет риск недоиспользования сетевых инвестиций. В развитых схемах добавляются гибкие

присоединения и нефиксированный доступ: проект принимает на себя ограниченный риск управляемых ограничений (curtailment) в оговорённых объёмах, а оператор получает инструмент точного дозирования нагрузки на узел без немедленного расширения сети. Критично, чтобы правила компенсации и приоритета ограничения были прозрачны: это напрямую влияет на банковскую окупаемость ВИЭ и стоимость капитала [5].

Закупка гибкости у третьих лиц стала альтернативой традиционному «строить, чтобы не перегружалось». Операторы применяют локальные аукционы и двусторонние контракты на снижение/увеличение потребления, управление генерацией и работу накопителей в зонах перегрузок и проблемного напряжения. Бизнес-процесс включает идентификацию узловых потребностей, квалификацию ресурсов, М&V-методики и расчёты. Эффективные программы строятся на нейтральности к технологиям и «пакетировании» услуг по длительности, скорости реакции и локализации; это уменьшает транзакционные издержки и повышает конкуренцию. Фундаментальная методика выбора между строительством и гибкостью — сравнительный анализ жизненных издержек и выгод: измеряется приведённая стоимость сети с NWA и без, плюс учитываются системные эффекты — сокращение потерь, ускорение присоединений, гибкость для балансировки на стыке с системным оператором [6].

Методики качественного регулирования закрепляют связь между доходом и результатом. Наиболее применимы наборы индикаторов надёжности (SAIDI/SAIFI), соблюдения сроков и качества присоединения, потерь, качества напряжения, доли заявок ВИЭ, подключённых без отсрочек, и доли потребностей, закрытых NWA. Доходная «ставка на риск» задаётся через диапазон отклонения: оператор может заработать больше базовой нормы прибыли, если опережает целевые уровни, и потерять часть дохода при систематическом отставании. На практике важен баланс: слишком узкий «коридор» подавляет инициативу, слишком широкий переносит риски на потребителей. Отдельно выделяются «быстрые» стимулы на уровне проектов — премии за ускоренное освобождение узких мест и за доказанное снижение капитальных затрат при сохранении функционала.

Цифровизация и киберустойчивость переходят из статуса «поддерживающих» в составную часть регулируемой деятельности. В ТОТЕХ-логике оправдано включение платформ данных, систем управления гибкостью, средств синхронизации времени, журналов неизменяемых событий, а также затрат на киберзащиту в регуляторную базу с нормированием по качеству данных и доступности сервисов. Это меняет и контроллинг: появляются SLA на данные и телеметрию, а отказоустойчивые режимы фиксируются как обязательные требования бизнес-процессов [7, 8].

В совокупности лучшие практики сводятся к двум принципам: доход должен зависеть от фактического решения проблемы сети по минимальной совокупной стоимости и быть нейтрален к способу — «построил» или «купил гибкость»; риски должны распределяться так, чтобы каждый участник влиял на те параметры, за которые отвечает финансово. Именно эти подходы позволяют операторам сетей интегрировать ВИЭ без «накачки» тарифной базы, поддерживая надёжность и ускоряя подключение новых источников.

Результаты и обсуждение

Результаты базируются на трёх источниках: сравнительном моделировании типовых узлов распределительной сети с долей ВИЭ 30–60% на горизонте пяти лет; расчётных экспериментах на цифровом двойнике фидера с переменной пропускной способностью и ограничениями по напряжению; а также анализе материалов пилотных программ по закупке гибкости и гибким присоединениям, опубликованных операторами и регуляторами. Во всех экспериментах сопоставлялись три конфигурации: «классическая» RAB-модель с приоритетом капитального усиления, TOTEX с нейтральностью к способу решения и стимулированием по результатам, и сценарий с дополнением в виде гибких присоединений и локальных закупок гибкости. Критерии — совокупные приведённые

издержки, динамика показателей качества (SAIDI/SAIFI, потери, качество напряжения), доля заявок ВИЭ, подключённых без отсрочек, и диапазон расчётной выручки оператора при заданных тарифных параметрах.

В конфигурации ТОТЕХ с привязкой дохода к достигнутым результатам инвестиционный профиль смещается от крупных «перестраховочных» проектов к модульным решениям: часть потребностей закрывается контрактами на гибкость и управлением спросом в нагрузочных узлах, а расширение сети откладывается до момента, когда экономия от гибкости перестаёт превосходить выгоды от капитального усиления. Это не приводит к ухудшению надёжности: по цифровому двойнику средние показатели качества удерживаются в целевом коридоре за счёт адресных активаций в критические часы. Денежный поток становится менее волатильным, поскольку оплата «за результат» позволяет дотягивать до целевых метрик комбинацией мер, а не только ростом базы капитала.

Гибкие присоединения и ограниченный доступ с заранее согласованной долей curtailment оказываются действенным инструментом ускорения ввода ВИЭ в узлах с ограничениями по токам и по напряжению. В моделях это отражается сокращением очередей и снижением требуемого «первого шага» по усилению, а в расчётах чувствительности — уменьшением регуляторного риска: при прозрачной методике компенсаций и предсказуемой приоритезации ограничений финансирующие организации принимают такие условия как часть стандартной проектной структуры. Для оператора это дополнительный управляемый ресурс гибкости в часы, когда построить или реконструировать элемент сети быстро невозможно.

Данные и киберустойчивость встраиваются в тарифную базу как элементы, поддерживающие расчёты и масштабирование программ. В расчётных экспериментах включение режимов деградации (сохранение минимально достаточного функционала при частичной потере связи), цифровых подписей телеметрии и неизменяемых журналов событий снижало спорность расчётов и ускоряло закрытие периодов. Экономический эффект проявлялся через уменьшение резервов «на всякий случай»: когда измерения и процедуры оплаты вызывают доверие, объёмы и цены закупок гибкости точнее отражают реальную потребность.

Трансформация бизнес-процессов прослеживается по всей цепочке. Планирование включает карты локальной ценности гибкости и «окна» по срокам присоединения ВИЭ; закупки опираются на каталоги услуг с типовыми SLA по объёму, зоне действия, скорости и длительности; расчёты и М&V стандартизированы по интервалам и форматам данных, а отчётность для участников автоматизирована; управляющий контур переводится на годовые ТОТЕХ-бюджеты с коридорами по КРІ и понятной корректировкой стимулирующих компонентов. В этой конфигурации оператор получает возможность выбирать экономически оптимальные комбинации мер без риска потерять базовую доходность из-за отказа от «лишнего» САРЕХ.

Ограничения и риски остаются значимыми. Недостаточная интероперабельность данных и разнородные стандарты на низких уровнях напряжения повышают транзакционные издержки и ослабляют доверие к расчётам. Несогласованные тарифные сигналы способны нейтрализовать эффект от программ гибкости, а чрезмерно агрессивные стимулы по качеству — перенести несоразмерные риски на оператора и потребителей. Тем не менее совокупная картина из моделирования и анализа кейсов показывает, что при согласованной работе регулирования, операционных практик и управления данными интеграция ВИЭ не ведёт к «раздуванию» тарифной базы: доход оператора привязывается к устранению узких мест и удержанию качества по минимальной совокупной стоимости, а не к доминированию какого-то одного способа решения. Именно в такой постановке возобновляемая генерация становится драйвером модернизации процессов и источником экономии для системы в целом.

Заключение. Показано, что устойчивость модели доходов оператора в условиях

роста возобновляемых источников энергии обеспечивается связкой ТОТЕХ и стимулирования по результатам, гибкими присоединениями и локальными закупками гибкости, опирающимися на достоверные данные и прозрачную М&V. Доход привязывается к устранению узких мест и достижению KPI (SAIDI/SAIFI, потери, сроки присоединения), а выбор между САРЕХ и несетевыми альтернативами становится технологически нейтральным. Тарифные сигналы «место × время» повышают адресность мер и уменьшают потребность в экстренных активациях. Координация TSO–DSO, единый реестр ресурсов и правила приоритета устраняют двойной учёт и конфликты активаций. Киберустойчивость и режимы деградации поддерживают расчёты и доверие участников. Практические шаги: масштабирование каталогов услуг и SLA, стандартизация данных/телеметрии, внедрение цифровых двойников в планирование. Это ускоряет ввод ВИЭ без раздувания тарифной базы и снижает совокупные издержки перехода.

Список источников

- 1. Текслер А.Л. Цифровизация энергетики: от автоматизации процессов к цифровой трансформации отрасли // Цифровая энергетика, 2020. В. 5. С. 3-6
- 2. Ahmad T., Zhang D., Huang C., Zhang H., Dai N., Song Y., Chen H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities // Journal of Cleaner Production, 2021. Vol. 289
- 3. Ларин, А. С. Роль цифровизации в повышении надежности систем электроснабжения / А. С. Ларин // Студенческий. 2025. № 14-7(310). С. 16-18
- 4. Донченко, В. А. Концепция единой автоматизированной системы управления энергообъектами распределительных сетей и энергосбытовой деятельностью / В. А. Донченко, О. А. Котова // Электроэнергетика глазами молодежи : Материалы XI Международной научно-технической конференции. В 2-х томах, Ставрополь, 15–17 сентября 2020 года. Том 2. Ставрополь: Северо-Кавказский федеральный университет, 2020. С. 50-53.
- 5.Инновационные технологии в управлении системами обеспечения движения поездов / Н. А. Попова, П. А. Бодров, М. К. Попов, А. В. Бутенко // Энергетика транспорта. Актуальные проблемы и задачи : сборник научных трудов V международной научно-практической конференции, Ростов-на-Дону, 07–08 октября 2021 года / Ростовский государственный университет путей сообщения. Ростов-на-Дону: Ростовский государственный университет путей сообщения, 2021. С. 48-51.
- 6. Даглдиян, Г.Д. Применение систем технического зрения на железнодорожном транспорте. / Даглдиян Г.Д., Давыдов Ю.И. Сборник научных трудов "Транспорт: наука, образование, производство" ("Транспорт 2018"). Т.З. Ростовн/Д: РГУПС. 2018. С. 55-59
- 7. Колобов, И.А. Применение цифровых технологий на железнодорожном транспорте. Сборник научных трудов "Транспорт: наука, образование, производство" ("Транспорт-2018"). Т.З. Ростовн/Д: РГУПС. 2018. С.107-110
- 8. Баринова В.А., Девятова А.А., Ломов Д.Ю. Роль цифровизации в глобальном энергетическом переходе и в российской энергетике // Вестник международных организаций, 2021. Т. 16. \mathbb{N} 4. С. 126-145

Сведения об авторах

Никитенко Михаил Артемович, магистрант кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасске, Россия

Сведения о руководителе

Ланкин Антон Михайлович, к.т.н., доцент, доцент кафедры «Информационные и

измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасск, Россия

Information about the authors

Nikitenko Mikhail Artemovich, Master's student of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia

Information about the supervisor

Lankin Anton Mikhailovich, PhD, Associate Professor, Associate Professor of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia