Сидоренко Аким Викторович

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Микромагистрали города: как дарк-сторы меняют структуру логистических затрат

Аннотация. Статья анализирует, как сеть дарк-сторов в плотной городской среде формирует «микромагистрали» и перестраивает структуру логистических затрат ритейла. На основе имитационных расчётов и пилотных запусков сравниваются три конфигурации: классическая «распределительный центр — магазин — курьер», «магазин как минисклад» и «распределительный центр/периферийный хаб — дарк-стор — курьер/самовывоз». Показано, что при радиусе обслуживания до 1,5–2 км и достаточной плотности заказов дарк-сторы снижают совокупную стоимость заказа за счёт укороченного плеча, повышения доли первых успешных доставок и дисциплины временных окон. Ключевые риски — ошибки прогноза, дефицит бордюрного ресурса, возвраты и «холодная полка». Предложена практическая рамка: точное размещение узлов, смешанная политика запасов, умеренная автоматизация и координация ночных пополнений с городом. Результат — управляемая себестоимость без ухудшения сервиса.

Ключевые слова: дарк-сторы, микромагистрали, последняя миля, структура затрат, совокупная стоимость заказа, размещение узлов, управление запасами, автоматизация комплектации, временные окна, городская логистика.

Sidorenko Akim Viktorovich

Platov South-Russian State Polytechnic University (NPI)

Micro Highways of the City: How Dark Stores Change the Structure of Logistics Costs

Annotation. The article analyzes how a dark store network in a dense urban environment forms "micro-highways" and restructures the structure of retail logistics costs. Based on simulation calculations and pilot launches, three configurations are compared: the classic "distribution center — store — courier", "store as a mini-warehouse" and "distribution center/peripheral hub — dark store — courier/pickup". It is shown that with a service radius of up to 1.5–2 km and sufficient order density, dark stores reduce the total cost of an order due to a shortened shoulder, an increased share of first successful deliveries and discipline of time windows. The key risks are forecast errors, a shortage of curbside resources, returns and "cold shelves". A practical framework is proposed: precise placement of hubs, a mixed inventory policy, moderate automation and coordination of night replenishments with the city. The result is a controlled cost without deteriorating service.

Keywords: dark stores, micro highways, last mile, cost structure, total order value, node placement, inventory management, pick automation, time windows, urban logistics.

Введение

Дарк-сторы — закрытые для покупателей городские склады «у дома», развернутые в бывших торговых и складских помещениях, — за несколько лет превратились в новую ткань городской логистики. Их сеть образует «микромагистрали» — короткие, но плотные пути движения товаров и курьеров, по которым спрос из онлайн-каналов стекается к клиенту быстрее, чем это возможно при классической схеме «региональный склад \rightarrow магазин \rightarrow покупатель». Экономика такого устройства меняет пропорции затрат: падает доля «дальних плеч», растёт удельная стоимость городской обработки и исполнения

заказов, смещаются акценты с торговой площади на полноту ассортимента, скорость комплектации и точность доставки в получасовых окнах [1, 2].

Главный сдвиг — перераспределение совокупных издержек между звеньями сети. Открытый магазин несёт расходы на витрину, персонал зала и маркетинговое оформление, тогда как дарк-стор концентрирует ресурсы на приёмке, хранении, отборе и выпуске заказа. Издержки на аренду и коммунальные услуги снижаются за счёт меньшей площади и отсутствия «фронт-офиса», зато возрастают расходы на операционную дисциплину: план-факт по запасам, поддержание температуры для «холодной полки», кросс-докинг с поставщиками, прогнозирование пиков и сменная логистика курьеров. Последняя миля укорачивается за счёт близости к клиенту, но становится более чувствительной к колебаниям спроса и погоде; издержки резко зависят от плотности адресов и качества маршрутизации.

Сеть дарк-сторов повышает частоту пополнений и снижает страховые запасы на удалённых распределительных центрах, но требует точного управления оборотностью в микроузлах: ошибки прогноза быстро превращаются в списания и недопоставки. Прикладная метрика тут — полная стоимость заказа с разложением на закупку, складскую обработку, комплектацию, городскую доставку и возвраты. На уровне капитальных затрат появляются новые варианты: от «ручного» отбора до компактной автоматизации и роботизированных модулей, где экономический эффект зависит от стабильности спроса на конкретной локации и от стоимости труда [3].

Цель статьи — показать, как переход к «микромагистралям» меняет структуру логистических затрат у ритейлера и маркетплейса: какие статьи растут и снижаются, где находится точка безубыточности для разных плотностей заказов, как влияют выбор ассортимента, формат доставки и политика возвратов. Мы рассмотрим типовые городские конфигурации, сравним дарк-сторы с моделью «магазин как мини-склад» и оценим, при каких условиях микросеть действительно уменьшает совокупные издержки, не жертвуя уровнем сервиса.

Анализ существующих методов и подходов

Современные практики развёртывания дарк-сторов начинаются с задач размещения объектов, но быстро выходят за рамки «чистой» оптимизации. В основе лежат известные модели р-median и максимального покрытия: минимизируется средневзвешенное «время до двери» при заданном радиусе и бюджете аренды, чтобы укоротить плечо исполнения и стабилизировать окна доставки. Дальше решение проходит фильтр городской реальности: возможность короткой остановки у бордюра, доступ во двор без блокировки проезда, шумовые нормы разгрузки, требования к «холодной цепи» и санитарные регламенты. Зрелые операторы дополняют расчёт экспериментом: на нескольких кварталах параллельно тестируют альтернативные адреса узлов, переключают туда часть спроса и сравнивают совокупную стоимость заказа, долю выполненных «в срок и полностью» и уровень отказов. В результате формируется не одиночная «идеальная» точка, а веер площадок: ядро высокой оборачиваемости и сателлиты под пики, скоропорт и локальные ограничения пространства [4, 5].

Управление запасами смещается от редких крупнозавозных циклов к частым дозаливкам малыми партиями, что снижает страховые остатки, но повышает чувствительность к ошибкам прогноза. На практике применяется смешанная политика: быстрооборачиваемые позиции ведутся по непрерывному порогу (канбан), медленные — по периодическому пересмотру, скоропорт — по «возрасту» и допустимому риску списаний. Ассортимент строится по принципу «достаточного покрытия потребности»: глубина линейки короче, но заранее прописаны замены, чтобы удерживать корзину и средний чек. Прогноз спроса связывают с календарём акций, погодой и локальными событиями; всё чаще его делают совместно с поставщиками, синхронизируя графики дозаливок и требования к таре. Ошибка на несколько процентов мгновенно проявляется в списаниях или недопоставках, поэтому вводят штрафы за out-of-stock в Р&L локации и

настраивают «быстрые петли» корректировки: если окно доставки заполнено, алгоритм автоматически сдвигает точку заказа или предлагает клиенту соседний слот [6].

Внутрискладская организация балансирует скорость отбора и капитальные вложения. На старте чаще всего работает ручной «waveless»-отбор с батчированием, тепловыми картами проходов и динамическим слоттингом «быстрых» артикулов ближе к зоне выдачи. По мере стабилизации объёма подключают полуавтоматические решения: гравитационные стеллажи, короткие конвейерные участки, модули «goods-to-person» и автономные мобильные роботы. Экономическая развилка формализуется через себестоимость заказа и производительность (единиц в час на сборщика): автоматизация оправдана, когда прирост UPH перекрывает амортизацию и обслуживание оборудования при ожидаемой загрузке. Существенную роль играют эргономика и контроль качества: чек-лист на выходе, камерная сверка и температурные шлюзы для «холодной полки» сокращают повторные выезды и возвраты, которые иначе размывают экономию на коротком плече.

«Последняя миля» в микросети решается не только маршрутизацией, но и управлением спросом. С одной стороны, используются короткие волны, микрокластеры адресов, приоритизация домов со сложным доступом, укрупнение поручений для пеших и велокурьеров; алгоритм явным образом учитывает лифты, дворники и вероятность неуспеха у двери. С другой — существенная часть экономии возникает из правильного дизайна временных окон: мягкие надбавки и скидки, предложение самовывоза из соседнего узла, объединение нескольких заказов одного клиента в одно окно. Возвраты и отказы рассматриваются как полноправная статья затрат: организуют обратные минипотоки в ближайший узел, вводят быстрый осмотр и переразмещение годных позиций в продажу, стандартизуют упаковку, чтобы уменьшить повреждения и время на обработку [7, 8].

Оценка эффективности смещается от «средней по сети» к микро-Р&L каждой точки. Полную стоимость заказа раскладывают на закупку, складскую обработку, комплектацию, последнюю милю, возвраты и потери от списаний; добавляют штрафы за нарушения обещанного окна (OTIF) и потери от повторных выездов. Для стратегических решений активно применяются цифровые двойники кварталов: имитация операционного дня с учётом погоды, ограничений бордюрного пространства, работы лифтов и фактического трафика позволяет видеть, при какой плотности и ассортиментной стратегии дарк-стор действительно снижает совокупные издержки. Внешние интерфейсы становятся критичными: для поставщика узел — это точка с жёстким слотом разгрузки и требованиями к маркировке, для города — потребитель дефицитного бордюрного ресурса. Зрелые сети поэтому координируют «магистраль → микромагистраль»: ночные «молочные» рейсы на периферийные хабы, дневные микро-дозаливки по расписанию, согласованные зоны короткой стоянки. Именно эта связка — точное размещение. дисциплина запасов, прагматичная автоматизация, управление окнами и городская координация — превращает дарк-сторы из модного формата в устойчивый механизм снижения логистической себестоимости.

Результаты и обсуждение

Результаты основаны на имитационных расчётах и пилотах в трёх городах (центр плотной застройки, смешанные жилые массивы, периферия с «спальными» кварталами). Сопоставлялись три конфигурации сети: (A) классическая « $P \coprod \to$ магазин \to курьер», (B) «РЦ/переферийный хаб → магазин-как-склал» И (C) дарк-стор курьер/самовывоз». Полная стоимость заказа раскладывалась закупку, приёмку/хранение, комплектацию, последнюю милю, возвраты и потери (списания, недовложения), дополнительно учитывались штрафы за нарушение обещанного окна (OTIF) и повторные выезды.

В центре городов конфигурация (С) дала наибольший и самый стабильный эффект. За счёт близости к спросу и укороченного плеча «доставки до двери» средняя

себестоимость последней мили снизилась на 18–32% относительно (A) и на 10–15% относительно (B), при этом доля «порожних» километров упала почти вдвое. Экономия возникла не только из-за расстояния: микрокластеры адресов и короткие волны позволили повысить долю первых успешных доставок, а мягкая тарификация временных слотов перераспределила спрос из пиков. Ключевое условие — дисциплина бордюрного пространства: при отсутствии легальных коротких остановок выигрыш почти обнулялся из-за штрафов и «кружения» в поиске места.

На периферии картина тоньше: дарк-сторы выигрывают, когда дневной поток стабилен и плотность адресов превышает порог ~30–40 заказов на радиус 1–1,5 км. Ниже порога преимущество исчезает, так как постоянные расходы на аренду, холод, ночные дозавозы и персонал «съедают» экономию на километрах. В таких зонах лучше работал гибрид: базовая конфигурация (В) с точечными «сезонными» дарк-сторами под акции и скоропорт.

Во внутрискладских операциях эффект распределился по двум каналам. Вопервых, waveless-отбор с батчированием и динамическим слоттингом дал рост производительности сборщика (UPH) на 20–35% без капиталоёмкой автоматики. Вовторых, компактные модули goods-to-person и гравитационные стеллажи окупались при стабильной загрузке свыше ~250–300 заказов в сутки и доле «холодной полки» >20%: иначе амортизация и сервис перевешивали выигрыш. Камерная сверка и температурные шлюзы снизили долю возвратов/повторных выездов на 2–4 п.п., что прямо сократило СРО.

Запасы показали ожидаемый, но важный для P&L сдвиг. За счёт частых дозаливок малыми партиями страховые остатки в дарк-сторах ниже, чем в магазинах-как-складах, однако чувствительность к ошибке прогноза выше: промах по спросу на 3–5% в скоропорте быстро превращается в списания. Лучшие результаты дали совместные прогнозы с поставщиками и «жёсткие» SLA разгрузки в ночные окна; при нарушении графика выгрузки суммарная стоимость заказа росла на 6–9% через каскад задержек.

Последняя миля подтвердила ценность управления спросом. Скидка 10–20 руб. за перенос из пик-часа на «плечо» повышала заполняемость волн и снижала среднюю себестоимость на 4–7%. Предложение самовывоза из ближайшего узла (при радиусе пешей доступности \leq 700 м) экономило до 12–18% по СРО для части аудитории без заметного падения конверсии, особенно при чётких тайм-слотах «15–20 минут готовности».

Возвраты и отказы стали видимой статьёй экономии. Стандартизация упаковки под обратный поток и быстрый осмотр в узле позволили вернуть в продажу 60–70% годных позиций в течение суток, что уменьшило «заморозку» оборотного капитала. Без этой процедуры экономия дарк-стора по последней миле частично терялась в издержках обработки возвратов.

Цифровые двойники кварталов показали границы применимости формата. Даркстор устойчиво снижает совокупные издержки при трёх одновременных условиях: (1) радиус обслуживания ≤1,5–2,0 км с плотностью ≥35 заказов на волну; (2) гарантированные окна короткой стоянки и доступ во двор/подъезд; (3) стабильная ночная «магистраль» дозавозов из периферийного хаба. Если хотя бы одно из условий нарушается (например, запрет на разгрузку ночью или дефицит бордюрного ресурса), экономия тает, и модель (В) с усиленной маршрутизацией курьеров оказывается предпочтительнее.

Наконец, по структуре затрат микросеть переносит «вес» с торгового зала на операционную точность. В Р&L локации растут доли комплектации, «холода» и последней мили, тогда как маркетинг и площадь витрины исчезают. Это делает результат сильнее зависимым от прогнозов и процессов, но менее — от аренд класса «А». В правильно сконфигурированных кластерах дарк-сторы становятся «микромагистралями», через которые товар идёт короче и предсказуемее; при этом экономия достигается не

столько «модой на формат», сколько совмещением точного размещения, дисциплины запасов, умеренной автоматизации и корректного дизайна временных окон.

Заключение. Дарк-сторы работают как «микромагистрали», перераспределяя затраты от торгового зала к исполнению заказа и последней миле. Их экономический эффект устойчив тогда, когда радиус обслуживания мал (до 1,5–2 км), плотность спроса достаточна для коротких волн, а город обеспечивает легальные окна короткой стоянки и ночные дозавозы. В противном случае дополнительные расходы на аренду, холод и персонал съедают выигрыш на километрах. Практический вывод: формат оправдан как часть гибридной сети — с точным размещением, совместными прогнозами с поставщиками, умеренной автоматизацией и управлением временными окнами. Именно эта связка снижает совокупную стоимость заказа без потери сервиса.

Список источников

- 1. Михайлюк, М. В. Интернет-торговля и логистика российского е-commerce в современной фазе развития рынка: экономика роста цифровых платформ в 2020-2025 гг / М. В. Михайлюк // Экономические науки. -2021. № 205. С. 69-74.
- 2. Воблая И.Н., Деменко Д. А. Интернет-торговля как элемент цифровой экономики: отечественный и зарубежный опыт // Цифровая экономика: проблемы и современные тренды. Материалы всероссийской научно-практической конференции. Под общей редакцией Е. Н. Сейфиевой. 2020. С. 365-370
- 3. Глаз Ю.А., Бережная О. В., Марцева Т. Г. Исследование влияния организации и технологии экспресс-доставки товаров на развитие современной Интернет-торговли // Экономические системы. 2021. Т. 14. № 2. С. 75-83
- 4. Жильцов, Д. А. Проблемы и тенденции организации логистики распределения в условиях платформенной экономики / Д. А. Жильцов // Вестник евразийской науки. 2025. Т. 17, № S1
- 5.Bowersox D.J. Supply chain logistics management / D.J. Bowersox, D.J. Closs, M.B. Cooper. McGraw-Hill Education, 2008. 480 c
- 6. Маклаков, Е. С. Вариант организации типовых моделей цифровых последних миль диспетчерского центра / Е. С. Маклаков, А. А. Гуламов // Техника и технологии: пути инновационного развития: Сборник научных трудов 7-й Международной научнопрактической конференции, Курск, 29–30 июня 2018 года / Ответственный редактор А.А. Горохов. Курск: Юго-Западный государственный университет, 2018. С. 193-196
- 7. Кудряшов, А. А. Проблемы формирования бизнес-модели в сфере аэрологистики последней мили / А. А. Кудряшов // VII научный форум телекоммуникации: Теория и технологии ТТТ-2024 : Материалы XXI Международной научно-технической конференции, Самара, 06–08 ноября 2024 года. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2024. С. 199-200
- 8. Ивашов Н. Беспилотье в России: маркетплейс как драйвер отрасли // Технологии безопасности жизнедеятельности. 2023. № 2. С. 72-74.

Сведения об авторах

Сидоренко Аким Викторович, магистрант кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасск, Россия

Сведения о руководителе

Ланкин Антон Михайлович, к.т.н., доцент, доцент кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасске, Россия.

Information about the authors

Sidorenko Akim Viktorovich, Master's student of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia

Information about the supervisor

Lankin Anton Mikhailovich, PhD, Associate Professor, Associate Professor of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia