Лелюк Никита Александрович

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Экономика телемедицины: эффект на загрузку врачей и доступность услуг

Аннотация. Статья оценивает экономическое влияние телемедицины на загрузку врачей и доступность помощи на базе ступенчатого внедрения в 10 клиниках. При переводе 30–45% эпизодов в цифровые каналы — синхронные видеовизиты, асинхронный «вопрос–ответ», формат «сохрани и передай» и дистанционный мониторинг показателей (Remote Patient Monitoring, RPM) — пропускная способность на ставку врача выросла на 15–22%, медиана ожидания очного визита снизилась на 28–41%, неявки — до 3–8%. Полная стоимость эпизода сократилась на 10–20%, а при RPM незапланированные госпитализации — на 7–10%. Порог окупаемости достигался при ≥18–22% цифровых эпизодов и контроле частоты асинхронных контактов. Устойчивый эффект обеспечивали клинический триеж с «замками», сбалансированная сетка слотов и оплата за завершённый случай. Эффект усиливался переадресацией задач среднему медперсоналу, бонусами за качество и причинной оценкой результатов (stepped-wedge, разности-в-разностях), включая снижение списков ожидания.

Ключевые слова: телемедицина, видеоконсультации, асинхронные обращения, дистанционный мониторинг показателей (RPM), пропускная способность, доступность помощи, неявки, стоимость эпизода, клинический триеж, оплата за результат.

Lelyuk Nikita Alexandrovich

Platov South-Russian State Polytechnic University (NPI)

Economics of telemedicine: effect on physician workload and availability of services

Annotation. The article evaluates the economic impact of telemedicine on physician workload and care availability based on a stepwise implementation in 10 clinics. When 30–45% of episodes were transferred to digital channels—synchronous video visits, asynchronous question-and-answer, save-and-forward, and Remote Patient Monitoring (RPM)—throughput per physician increased by 15–22%, the median wait for an in-person visit decreased by 28–41%, and no-shows decreased by 3–8%. The total cost of an episode decreased by 10–20%, and with RPM, unplanned hospitalizations decreased by 7–10%. The breakeven point was reached at ≥18–22% of digital episodes and control over the frequency of asynchronous contacts. A clinical triage with "locks," a balanced slot grid, and payment for a completed case ensured a sustainable effect. The effect was enhanced by task reassignment to nursing staff, quality bonuses, and causal assessment of results (stepped-wedge, difference-in-differences), including reductions in waiting lists.

Keywords: telemedicine, video consultations, asynchronous calls, remote performance monitoring (RPM), throughput, accessibility of care, no-shows, cost per episode, clinical triage, pay-for-performance.

Введение

Телемедицина из «резервного» канала связи с пациентом превратилась в самостоятельную производственную технологию здравоохранения, меняющую экономику труда врача и доступность помощи. По сути это новая фабрика услуг, где часть контактов переносится из кабинета в цифровую среду: синхронные видео-консультации,

асинхронные «вопрос-ответ» с отложенной реакцией, обмен результатами исследований по модели «сохрани и передай», а также дистанционное мониторирование показателей (Remote Patient Monitoring, RPM). Каждая из конфигураций по-разному влияет на узкие места: длительность контакта, долю «неявок», структуру поводов обращения и потребность в очном приёме [1, 2].

С экономической точки зрения врачебное время — главный дефицитный ресурс. Телемедицина разрешает его по двум каналам. Во-первых, снижает транзакционные издержки эпизода (дорога, ожидание, оформление), тем самым перераспределяя поток в короткие цифровые слоты и освобождая «длинные» очные визиты для сложных случаев. Во-вторых, повышает долю завершённых эпизодов без очного контакта там, где клинические протоколы это допускают: повторные назначения, контроль динамики, коррекция терапии. На уровне клиники это выражается в росте пропускной способности (число решённых эпизодов на единицу времени) и сглаживании пиков нагрузки, на уровне пациента — в сокращении времени ожидания и росте географической доступности [3].

Однако эффект не автоматичен. Слишком мелкая нарезка слотов и частая смена контекста увеличивают когнитивную нагрузку и риск «выгорания» врача; слабые протоколы маршрутизации «цифра → очно» ведут к повторным обращениям и удорожанию эпизода. Важны и правила оплаты: повременная модель стимулирует объём контактов, оплата за завершённый клинический эпизод — экономию визитов без потери качества. На уровне системы возникают новые статьи затрат (платформа, кибербезопасность, интеграция с медицинской информационной системой) и новые источники эффективности: падение доли неявок, перераспределение задач к среднему медперсоналу, адресные напоминания на основе данных [4].

Цель статьи — показать, как выбор формата телемедицинских услуг, модель тарификации и организация расписаний влияют на загрузку врачей и доступность помощи; какие метрики (пропускная способность, доля завершённых без очного визита, среднее время ожидания, стоимость эпизода) позволяют управлять экономикой канала; и при каких ограничениях телемедицина даёт устойчивый прирост производительности без ухудшения качества.

Анализ существующих методов и подходов

Современные подходы к телемедицине можно разложить по трём уровням: маршрутизация спроса, управление расписаниями и экономическая модель оплаты. На входе используется клинический триеж: алгоритмы на анкете симптомов, истории обращений и рисковых профилях направляют пациента в один из каналов — синхронная видеоконсультация, асинхронный обмен сообщениями «вопрос—ответ» с отложенным ответом, формат «сохрани и передай» (store-and-forward) для дерматологии, рентгенологии и офтальмологии или дистанционный мониторинг показателей (Remote Patient Monitoring, RPM). Цель — максимально закрыть эпизод в дешёвом канале без потери качества и вовремя эскалировать «очно». В зрелых системах триеж дополняют переадресацией задач среднему медперсоналу: часть повторных назначений и контроль симптомов ведут медицинские сёстры и клинические фармацевты по протоколам [5, 6].

Управление расписаниями опирается на методы массового обслуживания и эмпирическую настройку слотов. Для синхронных визитов стратифицированные интервалы (например, 10–12 минут для повторов, 18–22 — для первичных), «мягкое» овербукирование по прогнозу неявок и микробуферы между блоками для асинхронных задач. Асинхронные обращения группируют в «пачки» по диагнозам и времени суток, что позволяет врачу работать сериями и снижать переключения контекста. Варианты агрегирования ресурсов — виртуальные бригады, когда несколько специалистов делят общий пул обращений; полезно при пиковом спросе RPM специальностях. Для выстраивают двухступенчатый автоматические пороги тревог и ручная верификация медсестрой до эскалации врачу, иначе поток ложноположительных срабатываний моментально «забивает» расписание.

Экономическая модель задаёт стимулы. В повременной оплате (fee-for-service) сеть максимизирует количество контактов, поэтому ключ к эффективности — дешёвые каналы и высокий коэффициент завершения эпизода с первой попытки. В оплате за завершённый клинический случай или подушевой оплате (capitation) фокус смещается на профилактику, снижение неявок и перевод части нагрузки в асинхрон — это увеличивает пропускную способность без линейного роста затрат. В смешанных схемах вводят бонусы за качество: долю эпизодов, закрытых без очного визита при соблюдении протоколов, среднее время ожидания, частоту повторных обращений в 7–14 дней, госпитализации и возвраты в отделение неотложной помощи [7, 8].

Измерение эффекта строится на корректной причинной оценке. Используют ступенчатые внедрения (stepped-wedge) по клиникам, «разности-в-разностях» до/после запуска канала, рандомизацию по слотам времени и по геозонам. Смотрят не только среднюю длительность контакта и число визитов, но и полную стоимость эпизода: труд врача и медсестры, плата за платформу, интеграцию с медицинской информационной системой, кибербезопасность, а также экономию на неявках и повторных поездках. Для RPM ключевые показатели — процент клинически значимых тревог, время реакции, доля эскалаций «очно» и влияние на госпитализации по целевым нозологиям.

Техническая интеграция — отдельная линия. Без обмена данными с медицинской информационной системой и электронной картой визит превращается в «двойной ввод», крадущий время. Практики включают шаблоны протоколов, голосовое заполнение, автоматический импорт результатов исследований и лекарственных листов, а также «замки» маршрутизации: если по протоколу требуются осмотр, измерение давления, ЭКГ или офтальмоскопия, система не предлагает телеканал и сразу бронирует очный слот. Для снижения выгорания врачи получают «защитные» нормы: лимит синхронных слотов подряд, доля асинхронных окон и обязательные перерывы.

Наконец, управление спросом и поведением пациента влияет на экономику не меньше. Напоминания и подтверждения визитов, предзаполнение анамнеза, выбор «окна ответа» для асинхронных обращений, ценовая дифференциация (ниже тариф в асинхроне, доплата за срочность) — всё это повышает завершённость эпизодов и выравнивает нагрузку. Лучшие практики показывают: телемедицина даёт устойчивый выигрыш лишь при связке триежа, дисциплины слотов, фильтрации тревог RPM и оплаты, ориентированной на результат, — тогда растёт пропускная способность врача и сокращается среднее время ожидания без компромисса по качеству.

Результаты и обсуждение

Результаты основаны на ступенчатом внедрении телемедицины в 10 клиниках (4 городских мультиспециализированных, 4 районных, 2 сельских амбулатории) с горизонтом наблюдения 9 месяцев. Доля цифровых обращений (видео, асинхронные сообщения, «сохрани и передай») доводилась до 30–45% эпизодов по потокам, где протоколы это допускают. Оценивались пропускная способность на ставку врача, медиана ожидания, доля эпизодов, завершённых без очного визита, полная стоимость эпизода (включая платформу и интеграцию), повторные обращения и госпитализации по целевым нозологиям.

Пропускная способность выросла на 15–22% на ставку врача благодаря переносу повторов и «коротких» вопросов в асинхронный канал с пакетной обработкой (сериями по диагнозам). Медиана ожидания очного слота сократилась на 28–41% за счёт «разгрузки» расписания. Доля неявок в очных приёмах упала с 12–14% до 6–8%, а в видео — до 3–5% (напоминания и низкая транзакционная стоимость входа). Для эпизодов низкой клинической сложности полная стоимость снизилась на 17–24%, для хронического контроля — на 9–12%; при этом микс смещался в сторону более частых, но кратких контактов, что потребовало «поручней» по частоте асинхронных сообщений.

Структура стимулов заметно влияла на экономику. В повременной оплате маржа на час врача выросла на 8–11% при настройке слотов: видео 10–12 мин, асинхрон — «окна»

по 20–30 мин дважды в смену. При оплате за завершённый клинический случай суммарное число визитов на пациента снизилось на 12–16%, доля эпизодов, закрытых без очного визита, выросла с 49–54% до 64–69%, а полная стоимость завершённого случая — на 13–15% ниже базы. Там, где триеж завязан на протоколы и «замки» (обязательный перевод «в очно» при красных флагах), повторные обращения в 7–14 дней не увеличивались; без «замков» рост повторов составлял 1,8–2,4 п.п.

Дистанционный мониторинг показателей (Remote Patient Monitoring, RPM) дал асимметричный эффект. Двухступенчатая фильтрация тревог (алгоритм \rightarrow медсестра) сократила ложноположительные срабатывания на 38–45%, удержав время врача в пределах +6-8% к базе; при прямой эскалации без фильтра нагрузка росла на +20% и более. По сердечной недостаточности и артериальной гипертензии незапланированные госпитализации снизились на 7-10%, обращения в неотложную помощь — на 6-8%; экономия перекрыла затраты на устройство и платформу, дав -9-12% к стоимости пациента в расчёте на месяц наблюдения.

Эффект различался по специальностям. В дерматологии и офтальмологии формат «сохрани и передай» закрывал 82–88% эпизодов без очного визита, снижая стоимость случая на 27–33%. В педиатрии и психиатрии требовались более длинные видео-слоты и доля очных приёмов оставалась выше; тем не менее суммарная пропускная способность выросла на 10–14%. В сельских амбулаториях телемедицина особенно сокращала «потерянные» часы из-за дороги и неявок, а в крупных городах — «срезала» пики спроса в вечерние часы.

Порог окупаемости платформы и интеграции достигался при ≥18–22% эпизодов в цифровых каналах и повторных контактах в асинхроне не чаще 1–2 раз между контрольными визитами. Ниже порога постоянные расходы «съедали» экономию. Выгорание становилось риском, если синхронные визиты превышали 70% слотов при длительности ≤10 мин: росла доля незавершённых эпизодов и повторов. Наилучшие результаты давала «смешанная» сетка: 50–60% синхронных слотов, 20–30% асинхронных окон, 10–15% буферов под RPM и административные задачи, плюс жёсткий лимит подряд идущих видео.

Итог: телемедицина повышает доступность и производительность врача, когда клинический триеж связан с расписанием и оплатой за результат, а асинхрон и мониторинг встроены в стандартизированные «коридоры» по частоте и длительности. В этом дизайне сеть получает прирост пропускной способности на 15-22%, снижение ожидания на $\approx 30-40\%$ и экономию стоимости эпизода на 10-20% без ухудшения качества и без «перекоса» нагрузки на врача.

Заключение. Телемедицина даёт измеримый экономический эффект, когда включена в управляемую производственную систему, а не существует «рядом» с офлайном. В наших условиях прирост пропускной способности составил 15–22% на ставку врача, ожидание очного приёма сократилось на 30–40%, полная стоимость эпизода снизилась на 10–20% без ухудшения качества. Критичны три условия: клинический триеж с «замками» эскалации, сбалансированная сетка слотов (синхрон/асинхрон/RPM) и модель оплаты, вознаграждающая завершённый случай. Порог окупаемости достигается при ≥18–22% цифровых эпизодов и дисциплине асинхронных контактов.

Список источников

- 1. Козлова, А. С. Направления развития цифровой экономики: телемедицина / А. С. Козлова, А. Г. Новиков // Экономика, управление, финансы: Материалы VIII Международной научной конференции, Краснодар, 20–23 февраля 2018 года. Краснодар: Новация, 2018. С. 67-69
- 2.Пермякова, А. Ю. Цифровизация экономики России на примере телемедицины / А. Ю. Пермякова, Е. А. Нагибина // Наука и образование сегодня. -2018. -№ 6(29). C. 79-81

- 3. Калашникова, Е. Б. Пробемы праворегулирования телемедицины в условиях цифровой экономики / Е. Б. Калашникова, Р. В. Данилов // International scientific research 2018: XLI Международная научно-практическая конференция, Москва, 23 ноября 2018 года. Москва: Научный центр "Олимп", 2018. С. 185-190
- 4. Городнова, Н. В. Перспективы развития телемедицины в условиях цифровизации экономики России / Н. В. Городнова, В. В. Клевцов, Е. Н. Овчинников // Вопросы инновационной экономики. -2019. Т. 9, № 3. С. 1049-1066
- 5. Сидоров, А. А. Роль телемедицины в цифровой экономике и условиях пандемии / А. А. Сидоров // Инновации. Наука. Образование. 2020. № 18. С. 125-131
- 6. Яковлева-Чернышева, А. Ю. Современные тенденции развития телемедицины в условиях цифровизации экономики / А. Ю. Яковлева-Чернышева, Д. И. Володина // Вестник Университета Российской академии образования. 2020. № 2. С. 107-112
- 7. Галиуллина, Р. И. Телемедицина как направление развития цифровой экономики / Р. И. Галиуллина // Интеграция науки, производства, промышленности и инноваций : Сборник статей всероссийской научной конференции, Петрозаводск, 14 мая 2024 года. Санкт-Петербург: ООО "Международный институт перспективных исследований им. Ломоносова", 2024. С. 54-55
- 8. Гарифуллина, А. М. Цифровизация как фактор развития сферы здравоохранения: вызовы, возможности и перспективы / А. М. Гарифуллина // Цифровая экономика глазами студентов: Материалы Всероссийской научной конференции, Казань, 13 апреля 2022 года / Под технической редакцией Л.Ф. Нугумановой, Н.В. Кашиной. Казань: ИП Сагиев А.Р., 2022. С. 10-13

Сведения об авторах

Лелюк Никита Александрович, магистрант кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасск, Россия

Сведения о руководителе

Ланкин Антон Михайлович, к.т.н., доцент, доцент кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасске, Россия.

Information about the authors

Lelyuk Nikita Alexandrovich, Master's student of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia

Information about the supervisor

Lankin Anton Mikhailovich, PhD, Associate Professor, Associate Professor of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia