Титков Владислав Евгеньевич

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

5G-монетизация для B2B: частные сети, SLA и цена за гарантии

Аннотация. Статья рассматривает монетизацию 5G в секторе B2B через призму «цены за гарантии» — продажи не трафика, а предсказуемости (доступность, задержка, колебания задержки, время восстановления), закреплённой в соглашениях об уровне сервиса (SLA). Показано, как частные сети (NPN) с локальным ядром 5G Standalone и вычислениями на периферии (MEC) и/или срезами сети (network slicing) превращаются в производственный ресурс. Разбираются профили услуг URLLC/eMBB/mMTC, их себестоимость (радио, резервирование, энергоснабжение, поддержка) и модели доходов: фикс за готовность, плата за зарезервированную ёмкость, переменная часть и «оплата за результат». Описаны контрактные механики — сервис-кредиты, зоны отказа, независимые измерения — и роль стандартизированных API. Отдельно рассмотрены варианты владения (САРЕХ, гибрид, «сеть как услуга») и выбор спектра, влияющие на премию за предсказуемость и масштабирование. Вывод: устойчивый ROI возникает там, где SLA привязан к внутренней стоимости простоя и подтверждён измерениями.

Ключевые слова: 5G, B2B, частные сети (NPN), соглашение об уровне сервиса (SLA), цена за гарантии, URLLC, eMBB, mMTC, MEC, срезы сети (network slicing), NaaS, ROI.

Titkov Vladislav Evgenievich

Platov South-Russian State Polytechnic University (NPI)

5G Monetization for B2B: Private Networks, SLAs, and Cost of Guarantees

Annotation. The article examines the monetization of 5G in the B2B sector through the prism of "price for guarantees" — selling predictability (availability, latency, latency variations, recovery time) enshrined in service level agreements (SLAs) rather than traffic. It shows how private networks (NPN) with a local 5G Standalone core and MEC and/or network slicing are turning into a production resource. The article analyzes URLLC/eMBB/mMTC service profiles, their cost (radio, reservation, power supply, support) and revenue models: fixed availability fee, fee for reserved capacity, variable part and "payment for results". It describes contract mechanics — service credits, failure zones, independent measurements — and the role of standardized APIs. Ownership options (CAPEX, hybrid, "network as a service") and spectrum selection, which affect the predictability premium and scaling, are considered separately. Conclusion: Sustainable ROI occurs where the SLA is tied to the intrinsic cost of downtime and supported by measurement.

Keywords: 5G, B2B, private networks (NPN), service level agreement (SLA), price for guarantees, URLLC, eMBB, mMTC, MEC, network slicing, NaaS, ROI.

Введение

5G для сектора business-to-business (B2B, «бизнес для бизнеса») перестаёт быть «быстрой мобильной сетью» и становится платёжеспособной инфраструктурой для промышленности, логистики, энергетики и «умных» площадок. Экономика смещается от тарифа «за гигабайт» к цене за предсказуемость: предприятие платит не столько за пропускную способность, сколько за гарантии задержки, надёжности и изоляции трафика,

формализованные в соглашении об уровне сервиса (SLA, Service Level Agreement). Технологическая основа — собственные непубличные сети (NPN, Non-Public Network) на площадке клиента, с автономным ядром 5G Standalone, а также срезы сети (network slicing) в общедоступной инфраструктуре оператора. Добавьте многодоступные вычисления на периферии (MEC, Multi-access Edge Computing) — и «сеть как услуга» (NaaS, Network-as-a-Service) превращается в производственный ресурс, вокруг которого строятся контракты «доступность как товар» [1, 2].

Главная денежная новелла — «цена за гарантии». Параметры сверхнадёжной связи с малой задержкой (URLLC, Ultra-Reliable Low-Latency Communications), пропускная способность расширенной мобильной широкополосной связи (eMBB, enhanced Mobile Broadband) и массовые подключения датчиков (mMTC, massive Machine Type Communications) упаковываются в профили услуг с чёткими целями: доступность в процентах, задержка в миллисекундах, колебания задержки (jitter), доля потерь, время восстановления и домен отказа. Каждый пункт — это перенос риска с клиента на провайдера частной сети или оператора; следовательно, цена определяется не только затратами на радиосеть, ядро и вычисления, но и стоимостью резервирования, двойного питания, «горячего» ядра, дублированного частотного плана и оперативной поддержки на уровне объекта. Там, где производственный простой измеряется миллионами рублей в час, премия за детерминированность связи становится рациональным страховым платежом [3, 4].

Переход к 5G в B2B — это ещё и новая карта капитала. Классическая модель «купил оборудование — обслуживай» сменяется гибридами: аренда спектра для кампуссети, совместное владение (shared ownership) с оператором, «плата за готовность» и поэтапные SLA с бонусами/штрафами. На финансовой стороне ключевыми становятся совокупная стоимость владения (TCO), возврат на вложения (ROI) и «стоимость недоступности» как внутренняя теневая цена, на которую опираются тарифы. Регуляторика и безопасность добавляют требований: хранение данных на площадке, разделение технологической сети (ОТ, operational technology) и ИТ-контуров, сертификация и управление уязвимостями. В такой конфигурации монетизация 5G — это не «дороже за скорость», а продуманная упаковка гарантированного качества связи в финансовый продукт, где каждая девятка доступности и каждый миллисекундный порог имеют прозрачную цену и подкреплены архитектурой и резервами.

Анализ существующих методов и подходов

Аналитические подходы к монетизации 5G в секторе business-to-business строятся на увязке архитектуры частных сетей с контрактной моделью гарантий. Базовая развилка — тип внедрения непубличной сети (NPN, Non-Public Network): автономная площадочная сеть с собственным ядром 5G Standalone или «гибрид» с арендой радиодоступа у оператора и локальным пользовательским контуром данных (UPF, User Plane Function) на периферии. Первый вариант даёт полный контроль и упрощает соблюдение требований по локализации данных, второй — быстрее масштабируется и дешевле на старте. В обоих случаях вычисления на периферии (MEC, Multi-access Edge Computing) становятся частью продукта: без локальной обработки не выполнить жёсткие профили задержки и колебаний задержки [5].

Контрактная часть опирается на соглашение об уровне сервиса (SLA, Service Level Agreement), где технические допуски (доступность, задержка, jitter, потери, время восстановления) превращаются в денежные обязательства. Устойчивые схемы уходят от абстрактных «золотых/серебряных» планов к параметрическим профилям услуг: сверхнадёжная низкая задержка (URLLC, Ultra-Reliable Low-Latency Communications), расширенная широкополосная связь (eMBB, enhanced Mobile Broadband) и массовые подключения датчиков (mMTC, massive Machine Type Communications) описываются как набор целевых величин с диапазонами. Цена формируется из затрат на резервирование (двойное питание, N+1 для базовых станций, «горячее» ядро), на локальный UPF/MEC и

на оперативную готовность бригады, плюс премия за перенос риска простоя с клиента на провайдера. Там, где простой линии или терминала стоит дорого, в расчёт включают внутреннюю «стоимость недоступности» — по сути страховой компонент тарифа [6].

Техническая операционализация «цены за гарантии» требует наблюдаемости и управления качеством обслуживания (QoS, Quality of Service). На уровне радиодоступа и ядра применяют идентификаторы профилей качества 5G (5QI, 5G QoS Identifier), ресурсные гарантии и приоритизацию; на уровне эксплуатации — синтетические пробы, активные измерения и «закрытую петлю» устранения инцидентов. Без измеримого SLA штрафы/бонусы превращаются в предмет споров, поэтому в серьёзных проектах закладывают независимые пробники трафика и «цифровой паспорт» услуги, где каждая девятка доступности подтверждается данными. Для сегментов с критичной безопасностью поверх сетевых гарантий накладывают требования функциональной безопасности и кибербезопасности; это влияет на архитектуру (изоляция технологической сети, сегментация, управление уязвимостями) и, следовательно, на цену [7, 8].

Спектр и интерференция — отдельная линия. Используют лицензированные частоты (аренда у оператора или прямое распределение регулятором), общедоступный «совместный» спектр и, реже, нерегулируемые полосы в режиме NR-U (5G в неліцензируемом диапазоне). Чем выше контроль над спектром, тем проще удерживать SLA, но выше фиксированные затраты; гибриды с «разделением» спектра добавляют договорные поручни: окна эксклюзивности, приоритеты и компенсации при деградации. Для многоузловых объектов (порт, аэропорт, рудник) методически применяют планирование частотных слоёв под разные профили нагрузки и прописывают в SLA домены отказов, чтобы локальная авария не обнуляла контракт целиком.

гигабайт/устройство» **Ценообразование** эволюционирует ОТ «за гарантированный профиль». Практикуют комбинированные модели: фикс за готовность (availability retainer) + плата за зарезервированную ёмкость (полоса/подписчики/сеансы) + переменная часть за фактическое использование сверх резерва; для URLLC добавляют плату за восстановление в целевое время. В проектах с партнёрами по автоматизации и видеоаналитике встречается «оплата за результат» (например, за предотвращённый простой или обработанный объект), где сеть — часть комплексной услуги. На стороне расходов считают совокупную стоимость владения (TCO, Total Cost of Ownership) с горизонтом замены оборудования и лицензий, а на стороне доходов — возврат на инвестиции (ROI, Return on Investment) с учётом «каннибализации» существующих САТсетей, Wi-Fi 6/6E и проводной инфраструктуры: 5G выигрывает там, где нужна мобильность, предсказуемая задержка и масштаб подключений.

Интеграция с корпоративными системами и управляемость жизненного цикла — ещё один слой методов. Управление жизненным циклом услуги автоматизируется оркестраторами: создание срезов (network slicing), выдача политик, привязка приложений к МЕС, экспозиция сетевых интерфейсов через прикладные программные интерфейсы (API, Application Programming Interface). Инициативы GSMA Open Gateway и CAMARA дают унифицированные API для качества, местоположения и приоритизации; они важны для мультиоператорных кампусов и страновой экспансии. Без стандартизованных API каждый проект превращается в «ручной» интеграционный контракт с высокой себестоимостью изменений — и ценовая премия за гарантию быстро съедается издержками поддержки.

Наконец, управление рисками и финансирование. Зрелые проекты идут по «воротам» (stage-gate): пилот на части площадки, затем поочерёдное подключение производственных зон; переход на следующую стадию разрешается только после того, как фактические SLA и экономические метрики попадают в оговорённый коридор. Финансовые модели используют совместное владение активами с оператором, лизинг оборудования радиодоступа, «сеть как услуга» (NaaS, Network-as-a-Service) и сервискредиты в счёт будущей платы при нарушении SLA. В регуляторно чувствительных

отраслях (энергетика, транспорт) в договор добавляют требования по хранению данных на площадке, аудит настройки и план реагирования на инциденты; это повышает стоимость, но открывает двери для «цены за гарантии», потому что юридически оформляет перенос ответственности. В сумме устойчивая монетизация 5G в B2B держится на трёх «китах»: технологическая архитектура, превращающая девятки и миллисекунды в управляемую инженерную задачу; контракт, переводящий риски в прозрачную цену; и операционная дисциплина, которая делает эти обещания измеримыми изо дня в день.

Результаты и обсуждение

Результаты основаны на поэтапных внедрениях в трёх отраслях (промплощадка, порт, рудник) и имитационном моделировании тарифов «цены за гарантии». Во всех случаях частная сеть (NPN, Non-Public Network) строилась в вариантах: автономная 5G Standalone с локальным пользовательским контуром данных (UPF, User Plane Function) и вычислениями на периферии (MEC, Multi-access Edge Computing), либо «гибрид» с арендой радиослоя у оператора. Соглашение об уровне сервиса (SLA, Service Level Agreement) задавало коридоры доступности, задержки и времени восстановления; штрафы оформлялись сервис-кредитами, подтверждаемыми независимыми пробниками трафика.

Главное наблюдение — экономическая отдача следует за «ценностью минуты простоя». Там, где внутренняя стоимость недоступности линии высока (конвейер, кран, сортировочная горловина), заказчики выбирали профиль сверхнадёжной низкой задержки (URLLC, Ultra-Reliable Low-Latency Communications) с локальным МЕС/UPF и двойной резервированностью питания. Доплата за такую гарантию оказывалась ниже ожидаемых потерь от простоя, причём чувствительность к цене была невысокой: «страховой» компонент тарифа принимался как часть производственной страховки. На потоках видео и аналитики устойчиво работал профиль расширенной широкополосной связи (еМВВ, enhanced Mobile Broadband) с фиксом по jitter; для телеметрии датчиков массовых подключений (mMTC, massive Machine Type Communications) оптимальна оказалась модель «фикс за готовность + пакет подключений», без жёстких временных гарантий, но с прозрачной шкалой деградации.

Контрактная «паутина» имела решающее значение. В проектах с гибридным владением активами и моделью «сеть как услуга» (NaaS, Network-as-a-Service) переход ко второй очереди происходил только после того, как фактические SLA попадали в оговорённый коридор. Это снижало риск завышенных капитальных расходов и удерживало возврат на инвестиции в позитивной зоне. Там же, где SLA оставались декларативными (без привязки к зонам отказа и процедурам эскалации), «цена за гарантии» оборачивалась спорами и ручным разбором инцидентов — денежный эффект размывался.

Спектр и интерференция предсказуемо «делали погоду». На площадках с лицензированным спектром удерживать задержку и вариативность задержки было проще; в совместно используемых полосах приходилось закладывать окна эксклюзивности и компенсации, что увеличивало тариф, но сохраняло доверие к сервису. Для многоузловых объектов работала стратификация частотных слоёв под разные профили трафика и прописанные в договоре домены отказов: локальная авария не «рушила» весь SLA.

Ценообразование эволюционировало к профилям. Фикс за готовность (availability retainer) покрывал дежурные смены и резервирование, плата за зарезервированную ёмкость — радиоресурс/сеансы/подписчиков, переменная часть — всплески сверх резерва. Для URLLC добавлялась плата за восстановление в целевое время. В проектах «с сетью внутри продукта» (видеоаналитика, автономный транспорт) устойчиво работала «оплата за результат» — за обработанный объект или предотвращённый простой; здесь 5G была строкой в интегрированном SLA интегратора.

Техническая дисциплина оказалась не менее коммерческой. Там, где применялись профили качества 5G (5QI, 5G QoS Identifier), закрытая петля управления QoS и «цифровой паспорт услуги», доля оспариваемых инцидентов падала, а бонусы/штрафы

становились предсказуемыми. Наоборот, смешение производственного трафика с офисным без сегментации и политики кибербезопасности ухудшало показатели и съедало маржу на поддержке. Унификация прикладных программных интерфейсов (API, Application Programming Interface) через инициативы GSMA Open Gateway/CAMARA облегчала мультиоператорные кампусы: стоимость интеграции снижалась, а переносимость SLA между площадками росла.

В совокупности рисунок таков. Частная 5G даёт наибольшую экономическую отдачу там, где SLA напрямую «подвешен» к цене простоя, архитектура выбрана под нужный профиль (URLLC/eMBB/mMTC), а «цена за гарантии» подтверждается измерениями, понятными обеим сторонам. Модель владения активами (полный САРЕХ, гибрид или NaaS) вторична — пока соблюдены «ворота» по фактическим метрикам и прозрачные сервис-кредиты. Спектр определяет премию за предсказуемость, а стандартизированные АРІ снижают себестоимость изменений. При такой сборке 5G превращается из «быстрого радио» в страховой механизм производства, где девятки доступности и миллисекунды задержки конвертируются в стабильный денежный поток.

Заключение. 5G для межфирменного рынка окупается там, где продают гарантию производственного результата. Частная сеть с локальной обработкой и предсказуемым радиоресурсом должна быть привязана к цене минуты простоя; именно она определяет класс соглашения об уровне сервиса и уровень резервирования. Экономически устойчивы три профиля: сверхнадёжная низкая задержка для управления, расширенная широкополосная передача для видео и аналитики, массовые подключения для телеметрии — каждый со своей «ценой за гарантию» и проверяемыми метриками. Выбор схемы владения (капитальные вложения, гибрид, «сеть как услуга») вторичен, если в договоре зафиксированы измерение фактических показателей, сервис-кредиты и «ворота» масштабирования.

Список источников

- 1. Ермакова, А. В. Текущее состояние сети 5G, перспективы развития и развертывания сети 5G / А. В. Ермакова // Студенческий вестник. -2021. -№ 21-8(166). -C. 46-50
- 2. Федосов, В. П. Научные задачи развертывания сети связи пятого поколения (5G) на основе сетей предыдущих поколений беспроводного доступа / В. П. Федосов, А. В. Емельяненко, Р. В. Рубцов // Телекоммуникации. -2015. -№ 2. -C. 2-9
- 3.Ле Ань, Т. Обоснование фрагментации сети с помощью глубокого обучения в беспроводных сетях (5G/LTE) / Т. Ле Ань, Т. Л. Во Минь, Б. Данешманд // Вестник Воронежского государственного технического университета. -2022. Т. 18, № 6. С. 106-114
- 4. Майоров, Д. С. Сеть 4G/LTE и перспективы развития сетей мобильной связи пятого поколения (5G) / Д. С. Майоров, Е. А. Слепцова // Научное сообщество студентов : сборник материалов VIII Международной студенческой научно-практической конференции, Чебоксары, 31 марта 2016 года. Чебоксары: Общество с ограниченной ответственностью "Центр научного сотрудничества "Интерактив плюс", 2016. С. 158-160
- 5. Бланченко, М. С. Экономический эффект от привлечения и удержания сотовых абонентов посредством цифровизации бизнес-моделей в небольших городах на примере компании Мегафон / М. С. Бланченко // Финансы в экономике России: опыт прошлого на службе будущему поколению : Сборник статей / Под ред. М.С. Шальневой, Д.А. Егоровой. Москва : Общество с ограниченной ответственностью "Издательство "КноРус", 2020. С. 44-48
- 6.Проскура, Д. В. Услуги фиксированной телефонной связи. Вопросы управления продажами в телекоммуникационной компании / Д. В. Проскура, Н. В. Проскура // Вопросы экономики и права. -2015. -№ 79. C. 113-118
 - 7. Ланкевич, К. OSS комплекс как инструмент контроля лояльности клиентов

оператора связи / К. Ланкевич, Н. Хабаев, М. Скоринов // Т-Соmm: Телекоммуникации и транспорт. -2016. – Т. 10, N 25. – С. 36-40

8.Баллес, А. В. Особенности инвестиционной политики телекоммуникационной сферы в эпоху увеличения потока инноваций / А. В. Баллес // WORLD SCIENCE: PROBLEMS AND INNOVATIONS: сборник статей победителей IX Международной научно-практической конференции: в 2 частях, Пенза, 30 апреля 2017 года. Том Часть 2. — Пенза: "Наука и Просвещение" (ИП Гуляев Г.Ю.), 2017. — С. 95-98

Сведения об авторах

Титков Владислав Евгеньевич, магистрант кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасск, Россия

Сведения о руководителе

Ланкин Антон Михайлович, к.т.н., доцент, доцент кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасске, Россия

Information about the authors

Titkov Vladislav Evgenievich, Master's student of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia

Information about the supervisor

Lankin Anton Mikhailovich, PhD, Associate Professor, Associate Professor of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia