Хвещук Анна Александровна

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Платформенные стратегии TIER-1: коинновации, риски и структура контрактов

Аннотация. Платформенная стратегия поставщика первого уровня (Tier-1) переводит бизнес от «детали по техническому заданию» к портфелю повторно используемых модулей и программного обеспечения с обновлениями «по воздуху» (ОТА, over-the-air). Экономика опирается на масштабирование в системе управления жизненным циклом (PLM, product lifecycle management), ограниченную кастомизацию и гибридную монетизацию «поставка + лицензия». Совместная разработка с производителем оригинального оборудования (ОЕМ, original equipment manufacturer) фиксируется в JDA/SOW (joint development agreement/statement of work) с распределением прав на интеллектуальную собственность (IP, intellectual property), правилами доступа к данным и эскроу исходного кода. Контракты усиливаются SLA/SLO (service level agreement/service level objective), объёмными опционами, take-or-pay и схемами gain-share/pain-share. Дисциплина change-orders сдерживает NRE (non-recurring engineering). В результате платформа становится предсказуемым активом: скорость вывода функций и качество конвертируются в маржу при контролируемых рисках снабжения и кибербезопасности.

Ключевые слова: Tier-1; платформенная стратегия; коинновация; OEM; PLM; JDA; SOW; OTA; SLA; SLO; NRE; лицензирование; take-or-pay; объёмные опционы; gain-share/pain-share; IP; эскроу исходного кода; кибербезопасность.

Khveshchuk Anna Alexandrovna

Platov South-Russian State Polytechnic University (NPI)

TIER-1 Platform Strategies: Coinnovations, Risks, and Contract Structure

Annotation. The Tier 1 supplier platform strategy moves the business from a "part according to the technical specification" to a portfolio of reusable modules and software with over-the-air updates (OTA). The economics are based on scaling in the product lifecycle management (PLM), limited customization and hybrid monetization "supply + license". Joint development with the original equipment manufacturer (OEM) is recorded in the JDA/SOW (joint development agreement/statement of work) with the distribution of intellectual property rights (IP), data access rules and source code escrow. Contracts are reinforced by SLA/SLO (service level agreement/service level objective), volume options, take-or-pay and gain-share/pain-share schemes. Change-order discipline restrains NRE (non-recurring engineering). As a result, the platform becomes a predictable asset: the speed of feature delivery and quality are converted into margins with controlled supply and cybersecurity risks..

Keywords: Tier-1; platform strategy; coinnovation; OEM; PLM; JDA; SOW; OTA; SLA; SLO; NRE; licensing; take-or-pay; volume options; gain-share/pain-share; IP; source code escrow; cybersecurity.

Введение

Поставщики первого уровня (Tier-1) в автопроме и смежных отраслях всё чаще выходят из роли «цеха по техническому заданию» и строят собственные платформы: доменные контроллеры, батарейные системы, тепловые контуры, датчики и программное обеспечение (ПО), способное работать на моделях разных марок. Экономика такого шага

меняется принципиально. Вместо разовых инженерных затрат (NRE, non-recurring engineering) и торга за «цену детали» появляется логика портфеля: масштаб выпуска распределяет фиксированные расходы, модульность снижает стоимость вариативности, а обновляемое «по воздуху» ПО (ОТА, over-the-air) создаёт повторяющиеся денежные потоки. Но вместе с шансом на стабильную маржу растут и риски: зависимость от дорожных карт производителей оригинального оборудования (ОЕМ, original equipment manufacturer), давление цен при превращении платформы в «товарную» компоненту, размывание прав на интеллектуальную собственность (ИС; англ. IP — intellectual property) и ответственность за кибербезопасность и корректность ОТА-обновлений [1].

Коинновация — совместная разработка с ОЕМ и поставщиками второго уровня (Tier-2) — выглядит привлекательно: ранний доступ к спецификациям, общий бэклог, согласованные интерфейсы и стенды сокращают переделки и ускоряют выход в серию. Но возрастают взаимные уязвимости: любое смещение приоритетов ОЕМ или сбой у Tier-2 быстро превращаются в срыв старта серийного производства (SOP, start of production) и штрафы, «съедающие» эффект масштаба. Поэтому платформа требует иной конструкции сделки. В неё добавляют плату за резерв инженерной мощности, коридоры изменения состава поставки, «лестницы» цен при расширении функционала, требования обратной совместимости, правила раздела эффекта «проектирования под целевую себестоимость» (design-to-cost) и распределения ответственности за уязвимости. Появляются новые предметы переговоров: кому принадлежат алгоритмы и эксплуатационные данные, как лицензируется ПО при перепродаже автомобиля, что происходит с модулем в «второй жизни» батареи или при ремонте с восстановлением узлов [2].

Цель статьи — рассмотреть платформенную стратегию Tier-1 как экономическую систему, а не как чисто технический процесс. Мы покажем, где платформа действительно создаёт добавленную стоимость (масштаб, скорость вывода, повторные потоки), где — разрушает (избыточная кастомизация, контрактная асимметрия, «товаризация» решения), и какие структуры коинновационных контрактов удерживают баланс: объёмные опционы, схемы take-or-pay, гибриды «лицензия + поставка» и модели раздела предотвращённых затрат. Итог — практическая рамка переговоров и набор метрик, позволяющих Tier-1 защищать маржу и управлять риском, оставаясь технологическим партнёром, а не безымянным производителем деталей.

Анализ существующих методов и подходов

Аналитические подходы к платформенным стратегиям поставщиков первого уровня (Tier-1) сводятся к увязке архитектуры продукта, процессов совместной разработки и контуров монетизации с контрактной моделью. Базой служит «линейкаплатформа» дисциплина управления вариантами: минимальный унифицированных модулей интерфейсов покрывает требования И производителей оригинального оборудования (OEM, original equipment manufacturer), а изменения вносятся через регламентированный совет по архитектуре и изменениям. На стороне методологии это опирается на инженерную практику product-line engineering, систему PLM (product lifecycle management, управление жизненным циклом продукта) и правила «обратной совместимости» интерфейсов, чтобы новая функция не разрушала ранее поставленные конфигурации у разных автопроизводителей [3].

Экономика разработки переводится из «проекта под заказ» в портфель разовых и повторяющихся потоков. Разовые инженерные затраты (NRE, non-recurring engineering) планируются как общий фонд для нескольких программ с «лестницей» погашения по объёмам выпуска; повторяющиеся — это лицензии на программное обеспечение, поддержка и обновления «по воздуху» (ОТА, over-the-air), сервисные соглашения с целевыми показателями (SLA, service level agreement). Чтобы NRE действительно амортизировались, применяют модульную матрицу и «коридоры кастомизации» в спецификации поставки: всё, что выходит за рамки платформенного ядра, оплачивается как опция с отдельной ценой и сроком [4, 5].

Коинновация — совместная разработка с ОЕМ и поставщиками второго уровня (Tier-2) — оформляется через JDA (joint development agreement, соглашение о совместной разработке) и SOW (statement of work, перечень работ). В JDA фиксируют права на результаты: кому принадлежат алгоритмы, библиотеки и калибровки, при каких условиях предоставляется исходный код в эскроу и как лицензируется программный компонент при перепродаже автомобиля. Для аппаратной части увязывают цену спецификации состава (BOM, bill of materials) с целевыми ограничениями design-to-cost и с «лестницами» цены по объёмам. Для софта используют смешанные модели: единовременная лицензия на автомобиль, роялти за активный парк, подписка на функции и обязательства по поддержке безопасной разработки.

Снижение операционных рисков решают через контуры зрелости документации и встроенные «ворота» готовности к началу серийного производства (SOP, start of production): индексы полноты требований, доля выдачи документов «без возврата», тесты совместимости на стендах уровня системы. Кибербезопасность и функциональная безопасность закрепляются как экономические обязательства: соответствие ISO 21434 и ISO 26262, сроки закрытия уязвимостей, правки ОТА без остановки машины, штрафы за нарушения и распределение ответственности в гарантийный период. Для дефицитных компонентов (микросхемы, ячейки батарей) вводят «зонтичные» закупки и кросссертификацию альтернативных позиций, чтобы не завязывать платформу на единственный источник [6, 7].

В контрактной архитектуре вместо классического «цена за блок» применяют гибриды. Схема «поставка + лицензия» разделяет материальную часть и программное обеспечение, позволяя индексировать железо по сырью, а софт — по активному парку. Объёмные опционы и take-or-pay (бери или плати) страхуют загрузку мощностей Tier-1 при задержках ОЕМ, но привязываются к вехам качества и готовности. Gain-share/ pain-share (раздел экономии/перерасхода) применяют к совместным мероприятиям по снижению себестоимости и к предотвращённым затратам на переделки; чтобы избежать «размывания» эффекта, в договор вшивают прозрачную методику расчёта базовой и достигнутой стоимости. Для облачных компонентов вводят SLO (service level objective, целевой уровень сервиса) и КРІ (кеу регfоrmance indicator, ключевой показатель) по доступности, времени реакции и доле успешных обновлений [8].

Права на данные и телеметрию оформляются отдельно. ОЕМ стремится владеть эксплуатационными данными автомобиля, Tier-1 — данными модуля; компромисс — модели совместного использования с анонимизацией, ограничением целей и распределением ценности: данные, которые позволяют снизить гарантийные расходы или улучшить калибровки, оплачиваются как сервис или дисконт к цене. Для вторичного рынка и «второй жизни» компонентов оговаривают правила перепрошивки, перенос лицензий и условия прекращения поддержки; в противном случае платформа теряет остаточную стоимость и становится расходником.

Наконец, финансирование коинновации закрепляется экономическими «поручнями». Инженерный резерв Tier-1 оплачивается как retainer (фикс за доступность команды) с отчётностью по загрузке; изменения вне базового объёма выводятся в change-orders с обязательной оценкой влияния на сроки и бюджет; риски производства и санкций распределяются через ограничения ответственности и страхование перерывов бизнеса. Там, где программа критична для ряда моделей, практикуются совместные инвестиции в оснастку и тестовую инфраструктуру с правами возврата и выкупа. В таком устройстве платформа перестаёт быть ставкой «всё или ничего»: коинновация получает предсказуемую экономику, а контракт — механизмы, которые удерживают интересы Tier-1 и ОЕМ в равновесии по мере роста функциональности и парка.

Результаты и обсуждение

Результаты и обсуждение опираются на внедрения у трёх поставщиков первого уровня (Tier-1) в программах для двух производителей оригинального оборудования

(ОЕМ, original equipment manufacturer) и на финансово-техническое моделирование портфельной «линейки-платформы». Там, где программно-аппаратная архитектура была зафиксирована в PLM (product lifecycle management) с «коридорами кастомизации», повторное использование модулей превысило плановый уровень, а разовые инженерные затраты (NRE, non-recurring engineering) действительно амортизировались на нескольких моделях. Экономически это проявилось не только в снижении удельных NRE на изделие, но и в более ровной марже: вариативность себестоимости по версиям уменьшилась, потому что изменение спецификации (ВОМ, bill of materials) проходило через один и тот же контур данных.

Коинновация с ОЕМ работала тогда, когда JDA (joint development agreement) и SOW (statement of work) связывали права на результаты и модель дохода. Если алгоритмы и калибровки оформлялись как лицензируемые компоненты, а обновления «по воздуху» (ОТА, over-the-air) имели понятные SLA (service level agreement) и SLO (service level objective), платформа получала повторяющийся поток выручки без конфликта с ценой «железа». В случаях, где JDA оставляло лазейки на эксклюзивность без встречной платы, возникала блокировка вторичного использования модуля и «зависание» NRE на одном заказчике. Практическая развилка очевидна: либо эксклюзив за доплату и с ограниченным сроком, либо «ядро» в общем доступе, а адаптация — как оплачиваемая опция.

Переход к гибридной контрактной схеме «поставка + лицензия» снизил чувствительность к волатильности сырья. Материальная часть индексировалась по входящим материалам и логистике, программная — по активному парку и версии, а изменения фиксировались в EULA/лицензиях с правом переноса при перепродаже автомобиля. Такой разнос позволял не «зацементировать» цену блока на годы и одновременно защищал Tier-1 от требования бесконечных доработок без компенсации. Там, где ОЕМ и поставщик дополнительно вводили gain-share/pain-share (раздел экономии/перерасхода) на предотвращённые затраты по качеству, мотивы выравнивались: ранняя коллизия в интерфейсе закрывалась быстрее, потому что каждая сторона видела денежный результат.

На стороне качества интеграция функциональной и кибербезопасности — ISO 26262 и ISO 21434 — в план разработки дала осязаемый экономический эффект. Индекс «первой сдачи без возврата» документов вырос, а дефектность на миллион изделий (PPM, parts per million) снизилась, потому что проверка интерфейсов и угроз проводилась до начала серийного производства (SOP, start of production). Это прямо уменьшало объём доработок после SOP и объём гарантийных заявок. В облачных компонентах показатель доступности и доля успешных ОТА-обновлений были связаны с бонусами/штрафами: SLA из юридического текста превращался в управляемую метрику для инженерной команды.

Риски снабжения критических позиций (микросхемы, ячейки батарей, силовые модули) сглаживались «зонтичными» закупками и кросс-сертификацией альтернатив. Когда в соглашениях появлялись обязательные объёмные опционы и take-or-pay («бери или плати») с привязкой к вехам готовности, Tier-1 мог планировать мощность, а ОЕМ — требовать исполнения без завышенных страховочных наценок. Существенно помогал независимый эскроу исходных кодов: доступ ОЕМ к коду открывался только при наступлении чётко определённых событий (банкротство, прекращение поддержки), что снимало опасения «запирания» и не разрушало лицензионную модель.

Права на данные и телеметрию оказались центральным узлом. Там, где эксплуатационные данные автомобиля оставались у ОЕМ, а данные модуля — у Tier-1, но часть датчиковых срезов передавалась по обезличенной схеме для улучшения калибровок, снижались гарантийные расходы и возрастала ценность обновлений. Попытки замкнуть все данные на одну сторону приводили к затяжным переговорам и потере скорости. Компромиссный механизм — «данные в обмен на сервис»: ОЕМ предоставляет доступ к минимально достаточному набору, а Tier-1 обязуется выпускать улучшения, которые

измеримо уменьшают отказы и время ремонта.

Финансовая сторона коинновации требовала дисциплины изменений. Ретейнер (фикс за доступность инженерной команды) покрывал «фоновую» работу по сопровождению платформы, а любые отклонения от базовых требований шли через change-order с расчётом влияния на срок и бюджет. В проектах, где этим пренебрегали, платформенная экономика расползалась: фактический объём «единичных» доработок съедал эффект от повторного использования. Там же, где действовал ежемесячный реестр изменений с экономической оценкой и кросс-функциональным утверждением, доля неконтролируемых работ падала, и NRE-фонд расходовался по назначению.

Наконец, по каналам монетизации лучший результат давала «лествица» лицензирования: базовая функция входила в цену блока, расширенные — активировались как подписка или бессрочная лицензия на VIN с учётом переноса прав при перепродаже. Это позволяло ОЕМ не опасаться размывания комплектаций, а Tier-1 — получать поток выручки по мере роста парка и выпусков ОТА. В совокупности платформа переставала быть разовой «ставкой» и превращалась в управляемый актив: архитектурные решения, права, SLA/SLO и финансовые механики образовывали одну систему, где скорость вывода функций и качество исполнения напрямую конвертировались в прогнозируемую маржу обеих сторон.

Заключение. Платформенная стратегия поставщика первого уровня (Tier-1) даёт устойчивую маржу лишь тогда, когда она оформлена как единая система — от архитектуры до прав и денег. Архитектура фиксируется в PLM и допускает ограничённую кастомизацию; совместная разработка с производителем оригинального оборудования (ОЕМ) опирается на чёткие JDA/SOW, раздел прав и «лесенку» монетизации: базовая функция в цене блока, расширения по лицензии/подписке. Гибрид «поставка + лицензия», gain-share/pain-share и SLA/SLO превращают качество и доступность в деньги; эскроу исходного кода снижает риски «запирания». Ретейнер и дисциплина change-orders удерживают NRE под контролем. В такой конфигурации платформа становится управляемым активом, а коинновация — предсказуемым источником дохода для обеих сторон.

Список источников

- 1.CMS data access and usage studies at PIC Tier-1 and CIEMAT Tier-2 / A. Delgado Peris, J. Flix Molina, J. M. Hernández [et al.] // EPJ Web of Conferences. 2020. Vol. 245. P. 04028
- 2.JINR grid tier-1@tier-2 / N. S. Astakhov, A. S. Baginyan, A. I. Balandin [et al.] // CEUR Workshop Proceedings : 26, Budva, 25–29 сентября 2017 года. Budva, 2017. Р. 68-74
- 3. Самсонов, Е. А. Переход на электромобильное общество: экономические аспекты налогообложения электротранспорта / Е. А. Самсонов, С. А. Кашкан // Актуальные вопросы современной экономики. 2023. № 5. С. 108-114
- 4. Костюкевич, К. А. Целесообразность перехода к моделям рационального потребления и производства: использование электротранспорта / К. А. Костюкевич, Ю. И. Гойлик // Актуальные проблемы экономики и управления в XXI веке : сборник научных статей VIII Международной научно-практической конференции: в 2 частях, Новокузнецк, 06–07 апреля 2022 года. Том Часть 1. Новокузнецк: Сибирский государственный индустриальный университет, 2022. С. 12-17
- 5.Зеткина, О. В. Российский рынок автомобилестроения: основные вызовы и перспективы внедрения новых технологий / О. В. Зеткина, П. Н. Мальков // Современная экономическая наука: теоретический и практический потенциал : материалы II Международной научно-практической конференции, Ярославль, 24 октября 2024 года. Москва: Издательский дом "Научная библиотека", 2025. С. 80-85
 - 6. Трифонова, Н. В. Выбор бенчмарка: китайский рынок и индустрия

электромобилей / Н. В. Трифонова // Вестник факультета управления СПбГЭУ. -2024. - № 20. - С. 112-119

7. Голубев, В. А. Проблемы перехода на электротранспорт в России / В. А. Голубев, А. Г. Липатов // Актуальные проблемы управления - 2018 : материалы 23-й Международной научно-практической конференции, Москва, 14–15 ноября 2018 года / Государственный университет управления. Том Выпуск 2. — Москва: Государственный университет управления, 2019. — С. 24-26

8.Плесовских, А. Е. Потребление электроэнергии в российских городах в условиях массового перехода на электротранспорт / А. Е. Плесовских, Н. С. Колян // Климатическая политика и низкоуглеродная экономика. Менеджмент. Социология. Экономика : Материалы 61-й Международной научной студенческой конференции, Новосибирск, 17—26 апреля 2023 года. — Новосибирск: Новосибирский национальный исследовательский государственный университет, 2023. — С. 237-238

Сведения об авторах

Хвещук Анна Александровна, магистрант кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасск, Россия

Сведения о руководителе

Ланкин Антон Михайлович, к.т.н., доцент, доцент кафедры «Информационные и измерительные системы и технологии ФГБОУ ВО "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" в г. Новочеркасске, Новочеркасске, Россия

Information about the authors

Khveshchuk Anna Alexandrovna, Master's student of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia

Information about the supervisor

Lankin Anton Mikhailovich, PhD, Associate Professor, Associate Professor of the Department of Information and Measuring Systems and Technologies of the Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia