employee from 01.01.2025 until now
Rossiyskiy gosudarstvennyy universitet im. A.N. Kosygina (Tehnologii. Dizayn. Iskusstvo) (ASOIiU, prepodavatel')
employee from 01.01.2022 to 01.01.2025
Moscow, Russian Federation
employee from 01.01.2005 until now
Moskva, Russian Federation
employee from 01.01.1998 until now
Pavlovskiy Posad, Moscow, Russian Federation
VAK Russia 5.2.5
UDC 330.46
UDC 004.89
CSCSTI 06.52
Russian Classification of Professions by Education 38.00.00
Russian Classification of Professions by Education 38.06.01
Russian Library and Bibliographic Classification 65
Russian Library and Bibliographic Classification 6501
Russian Library and Bibliographic Classification 6505
Russian Trade and Bibliographic Classification 7
Russian Trade and Bibliographic Classification 772
Russian Trade and Bibliographic Classification 773
BISAC BUS049000 Operations Research
The article is devoted to the study of machine learning (MO) methods and their application in economics. Various approaches such as classification, regression, clustering, and text analysis are considered, which are used to solve key tasks, including forecasting macroeconomic indicators, managing risks, and improving the efficiency of business processes. A comparison is made between traditional econometric analysis and new methods based on artificial intelligence. The focus is on empirical analysis conducted on the open data of the World Bank, as well as on practical examples of successful implementation of projects using MO. The advantages and limitations of machine learning are discussed separately, as well as important ethical issues related to possible biased results of algorithms. The results obtained are of interest to researchers and practitioners seeking to improve the quality of forecasting and decision-making in a rapidly growing data environment. The general purpose of the article is to demonstrate the current state and prospects of using MO in the economy.
machine learning, econometrics, GDP forecasting, market segmentation, financial modeling, economic policy, clustering, regression, text data processing, risk management
1. Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685–725.
2. Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3–28.
3. Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106.
4. Abdukhalilova, L. T. Applying machine learning methods in electronic document management systems / L. T. Abdukhalilova, O. Yu. Iliashenko, D. Yu. Alchinova // Technoeconomics. – 2023. – Vol. 2, No. 4(7). – P. 61-71. – DOIhttps://doi.org/10.57809/2023.2.4.7.6. – EDN GRCBLV.
5. Bova V. V., Kravchenko Yu. A., Rodzin S. I. Metody i algoritmy klasterizacii tekstovyh dannyh // Izvestiya YuFU. Tehnicheskie nauki. 2022. № 4(228), S. 122–143. DOIhttps://doi.org/10.18522/2311-3103-2022-4-122-143. EDN QLLPYM.
6. Hodzhahanov V. A., Adaev R. B. Metody analiza i vizualizacii sredstvami mashinnogo obucheniya // Sbornik trudov konferencii INTEKS-2025. Chast' 5. M.: RGU im. A. N. Kosygina, 2025. S. 227–231.
7. Vahromeeva E. N., Zenzinova Yu. B. Avtomatizaciya klasterizacii kompaniy po finansovym pokazatelyam s ispol'zovaniem algoritma K-means // Diskussiya. 2024. № 5(126), S. 46–50. EDN HZSNEV.
8. Real'nye keysy primeneniya iskusstvennogo intellekta v promyshlennosti. URL: https://trubomet.ru/blog-post/realnye-kejsy-primeneniya-ii-v-promyshlennosti/ (data obrascheniya: 22.10.2025).
9. EORA: Iskusstvennyy intellekt kak instrument povysheniya marzhinal'nosti biznesa. URL: https://eora.ru/blog/article/5-bisznes-keisov-marzhinalnosti (data obrascheniya: 22.10.2025).
10. Kleinberg, J., Ludwig, J., & Mullainathan, S. (2018). Algorithmic fairness. AEA Papers and Proceedings, 108, 22–27.
11. Adaev R. B., Sevost'yanov P. A. Cifrovye metody prinyatiya resheniy v zadachah upravleniya zapasami // Nauchnyy aspekt. 2024. T. 25, № 7, S. 3168–3176.
12. Kirsanova O. G., Prohorenkov P. A., Reger T. V. Makroekonomicheskiy analiz otrasley ekonomiki pri pomoschi metodov mashinnogo obucheniya // Ekonomika i predprinimatel'stvo. 2024. № 5(166), S. 337–342. DOIhttps://doi.org/10.34925/EIP.2024.166.5.068. EDN EPHZCR.
13. PwC. (2017). Ekonomicheskoe vozdeystvie iskusstvennogo intellekta na ekonomiku Velikobritanii. PwC UK. URL: https://www.pwc.co.uk/economic-services/assets/ai-uk-report-v2.pdf (data obrascheniya: 22.10.2025).
14. Goulet Coulombe, P., et al. (2023). Machine learning for economics research: when, what and how. Bank of Canada Staff Analytical Note, 2023-16.
15. Razvitie metodov mashinnogo obucheniya i informacionnyh tehnologiy dlya resheniy zadach ekonomicheskih issledovaniy: modelirovanie stoimosti mediakompanii / D. G. Rodionov, A. V. Polovyan, P. A. Pashinina, E. A. Konnikov // Vestnik Instituta ekonomicheskih issledovaniy. – 2023. – № 3(31). – S. 224-238. – EDN PTMCLG.
16. Eggers, D. L., Nyuman, A. (2020). Vliyanie mashinnogo obucheniya na ekonomiku // Stenfordskaya shkola biznesa. URL: https://www.gsb.stanford.edu/faculty-research/publications/impact-machine-learning-economics (data obrascheniya: 22.10.2025).
17. Turing. (2025). 10 real'nyh keysov nauki o dannyh, kotorye stoit izuchit'. URL: https://www.turing.com/resources/data-science-case-studies (data obrascheniya: 22.10.2025).
18. ProjectPro. (2024). Keysy mashinnogo obucheniya s vazhnymi vyvodami. URL: https://www.projectpro.io/article/machine-learning-case-studies/855 (data obrascheniya: 22.10.2025).



