graduate student
The article discusses the key factors influencing the use of fuzzy logic to assess the effectiveness of digitalization of industrial enterprises. Five main aspects are highlighted: the quality and completeness of the source data, the competence of experts and staff, the structure and hierarchy of evaluation criteria, the level of maturity of the digital infrastructure, as well as consideration of ESG factors and strategic goals of the enterprise. The analysis of the significance of each factor and their interrelation in the context of digital transformation is carried out. The importance of an integrated approach to improve the accuracy and validity of management decisions is emphasized, as well as the prospects for further research in the field of data improvement, innovation in digital infrastructure and professional development. The article will be useful to specialists and researchers in the field of industrial digitalization and application of fuzzy logic.
efficiency, industry, digitalization, fuzzy logic
1. Veretehin A. V. Ocenka urovnya cifrovogo razvitiya promyshlennogo predpriyatiya na osnove metoda nechetkoy logiki // π-Economy. 2025. №1. URL: https://cyberleninka.ru/article/n/menedzhment-organizatsii-promyshlennoe-predpriyatie-tsifrovoe-razvitie-tsifrovaya-transformatsiya-tsifrovizatsiya-nechetkaya-logika (data obrascheniya: 01.08.2025).
2. Karyakin A.T. Primenenie metodov nechetkogo logicheskogo vyvoda v sistemah upravleniya resursami energeticheskih predpriyatiy s uchetom ekonomicheskoy effektivnosti // Ekonomika: vchera, segodnya, zavtra. 2025. Tom 15. № 2A. S. 145-157.
3. Kohanova V.S. APPARAT NEChETKOY LOGIKI KAK INSTRUMENT OCENKI EFFEKTIVNOSTI CIFROVIZACII KOMPANII. Vestnik universiteta. 2021;(2):36-41.
4. Krakovskaya, I.N., Korokoshko, Yu.V. i Slushkina, Yu.Yu. (2024) ‘Cifrovaya zrelost' promyshlennyh predpriyatiy: opyt ocenki’, Vestnik Sankt-Peterburgskogo universiteta. Ekonomika, 40 (3), s. 433–459. https://doi.org/10.21638/spbu05.2024.305.
5. Mansurova Mahina Yashnarovna ROL' METODOV NEChETKOY LOGIKI V PROCESSE OCENKI EFFEKTIVNOSTI BIZNES PROCESSOV // SRT. 2024. №4. URL: https://cyberleninka.ru/article/n/rol-metodov-nechetkoy-logiki-v-protsesse-otsenki-effektivnosti-biznes-protsessov (data obrascheniya: 01.08.2025).
6. Tkachenko E. A. Transformaciya podhodov k upravleniyu intellektual'nym kapitalom pod vliyaniem cifrovizacii / E. A. Tkachenko, E. M. Rogova, A. A. Huazhev // Ekonomicheskie nauki. Ekonomika i upravlenie narodnym hozyaystvom. – 2020. – № 10 (191). – S. 163-167. – DOI:https://doi.org/10.14451/1.191.163.
7. Kaminsky, Oleg & Koval, Viktor & Yereshko, Julia & Vdovenko, Nataliia & Bocharov, Mykhailo & Kazançoğlu, Yiğit. (2023). Evaluating the Effectiveness of Enterprises' Digital Transformation by Fuzzy Logic.https://doi.org/10.1201/9781003425885-4.
8. L. Maretto, M. Faccio, D. Battini // A Multi-Criteria Decision-Making Model Based on Fuzzy Logic and AHP for the Selection of Digital Technologies // IFAC-PapersOnLine, Volume 55, Issue 2, 2022, Pages 319-324, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2022.04.213.
9. Mansurali Anifa, Muruganandham Rajagopal, Krishnan Hariharan, Edwin T S, and Mohammad Mansoor Ahmed Pillai. 2024. Fuzzy Logic Decision Making Approach to identify the maximum influencing factor on productivity. In Proceedings of the 5th International Conference on Information Management & Machine Intelligence (ICIMMI '23). Association for Computing Machinery, New York, NY, USA, Article 11, 1–5. https://doi.org/10.1145/3647444.3647837/.
10. Matía F, Aguilar-Crespo JA, Jiménez A, Sanz R, Domínguez JM. Fuzzy Logic and Data Quality in Real-Time Systems. Integrated Computer-Aided Engineering. 1995;2(3):229-239. doihttps://doi.org/10.3233/ICA-1995-2306.
11. Serkan Eti, Serhat Yüksel, Hasan Dinçer, Dragan Pamucar, Muhammet Deveci, Gabriela Oana Olaru, A machine learning and fuzzy logic model for optimizing digital transformation in renewable energy: Insights into industrial information integration, Journal of Industrial Information Integration, Volume 42, 2024,100734, ISSN 2452-414X, https://doi.org/10.1016/j.jii.2024.100734.



