employee from 01.01.2000 until now
This article discusses the prospects for the use of predictive analytics in the management of business processes of an enterprise. At the first stage, a review of modern scientific literature devoted to predictive analytics methods and its role in optimizing business processes was conducted. The paper presents the author's classification of business processes for the development of an integration model with predictive analytics using the example of dairy cattle breeding. Special attention is paid to the advantages of its application: increasing operational efficiency, reducing costs, improving product quality and making informed management decisions based on forecasts. At the same time, the author highlights the limitations and problems associated with the implementation of predictive models, including the need for high-quality data, the complexity of integration with existing systems, and the need for qualified specialists. Thus, the article demonstrates that predictive analytics has significant potential to transform business process management in various industries, providing a path to more flexible and adaptive enterprise management.
business processes, predictive analytics, optimization, agriculture, efficiency
1. Akimova, A. A. Osnovnye komponenty razrabotki prediktivnoy analitiki dannyh / A. A. Akimova // Molodezhnyy vestnik Novorossiyskogo filiala Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V. G. Shuhova. – 2022. – T. 2, № 3(7). – S. 64-67. – DOIhttps://doi.org/10.51639/2713-0576_2022_2_3_64. – EDN YIPXKF.
2. Vasil'eva, N. V. Prediktivnaya analitika kak vazhneyshaya stupen' v ierarhii analiticheskogo processa / N. V. Vasil'eva, L. A. Selivanova // Zhurnal pravovyh i ekonomicheskih issledovaniy. – 2021. – № 4. – S. 159-162. – DOIhttps://doi.org/10.26163/GIEF.2021.61.13.023. – EDN CXTBZN.
3. Voronin, E. A. Ispol'zovanie tehnologiy mashinnogo obucheniya v upravlenii pri optimal'nom razmeschenii i specializacii sel'skohozyaystvennogo biznesa / E. A. Voronin, A. G. Semkin // Ekonomika, trud, upravlenie v sel'skom hozyaystve. – 2020. – № 8(65). – S. 17-22. – DOIhttps://doi.org/10.33938/208-17. – EDN HUXMIP.
4. Dubrovskiy, V. Zh. Celi, zadachi i principy organizacii prediktivnogo analiza dannyh o deyatel'nosti promyshlennogo predpriyatiya / V. Zh. Dubrovskiy, N. V. Ibragimova // Ekonomika: vchera, segodnya, zavtra. – 2023. – T. 13, № 10-1. – S. 643-650. – DOIhttps://doi.org/10.34670/AR.2023.43.45.083. – EDN BOQEIG.
5. Zaripova, Ch. I. Skvoznye tehnologii v upravlenii riskami: primenenie prediktivnoy analitiki dlya minimizacii proizvodstvennyh sboev / Ch. I. Zaripova, S. M. Kucenko // Informacionnye tehnologii v stroitel'nyh, social'nyh i ekonomicheskih sistemah. – 2025. – № 2(36). – S. 194-196. – EDN EIRNXS.
6. Ispol'zovanie informacionno-analiticheskih sistem v ekonomike i menedzhmente APK / K. V. Chernysheva, A. P. Korol'kova, N. V. Karpuzova, S. I. Afanas'eva // Tehnika i oborudovanie dlya sela. – 2022. – № 1(295). – S. 43-48. – DOIhttps://doi.org/10.33267/2072-9642-2022-1-43-48. – EDN NISKIP.
7. Kazachenko, K. V. Algoritmy prediktivnoy analitiki dlya ocenki i upravleniya innovacionnymi proektami / K. V. Kazachenko // Ekonomika i upravlenie: problemy, resheniya. – 2024. – T. 17, № 12(153). – S. 201-208. – DOIhttps://doi.org/10.36871/ek.up.p.r.2024.12.17.026. – EDN PLSZBQ.
8. Kosenchuk O.V. Cifrovye tehnologii dlya effektivnogo vedeniya molochnogo i myasnogo agrobiznesa // Prodovol'stvennaya politika i bezopasnost'. – 2024. – Tom 11. – № 4. – doi:https://doi.org/10.18334/ppib.11.4.121606
9. Kosenchuk O.V., Volkova I.A. Processnyy podhod k razvitiyu innovacionnoy deyatel'nosti v agrarnom sektore // Ekonomika, predprinimatel'stvo i pravo. – 2025. – Tom 15. – № 11. – doi:https://doi.org/10.18334/epp.15.11.123907
10. Kuzovkova, T. A. Znachenie metodov prediktivnoy analitiki v ekonomike i upravlenii cifrovymi kompaniyami / T. A. Kuzovkova, O. I. Sharavova // Metodicheskie voprosy prepodavaniya infokommunikaciy v vysshey shkole. – 2021. – T. 10, № 3. – S. 28-32. – EDN TKNTJA.
11. Kuchkovskaya, N. V. Analiz effektivnosti ispol'zovaniya prediktivnoy analitiki v modelirovanii zhiznennogo cikla promyshlennyh predpriyatiy / N. V. Kuchkovskaya // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. – 2025. – № 1. – S. 141-148. – EDN SYGROJ.
12. Malova, N. N. Metodologicheskie voprosy analiza i prognozirovaniya proizvodstva na sel'skohozyaystvennom predpriyatii s ispol'zovaniem sistemnogo modelirovaniya / N. N. Malova // Nauka bez granic. – 2020. – № 7(47). – S. 81-87. – EDN OKULRG.
13. Malova, N. N. Metodologicheskie voprosy razrabotki kompleksa modeley analiza i prognozirovaniya / N. N. Malova // Nauka bez granic. – 2020. – № 7(47). – S. 88-94. – EDN AOLQVT.
14. Parfenova, V. E. Intellektual'nyy analiz vremennyh ryadov pokazateley agrarnogo proizvodstva / V. E. Parfenova // Innovacii. – 2020. – № 7(261). – S. 51-56. – DOIhttps://doi.org/10.26310/2071-3010.2020.261.7.008. – EDN NWOXYX.
15. Pervun, O. E. Prognoznaya analitika: analiz sovremennogo sostoyaniya i ee primenenie dlya prinyatiya resheniy / O. E. Pervun // Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta. – 2024. – № 3(85). – S. 120-126. – EDN ISEHXZ.
16. Puryskina, V. A. Prediktivnaya analitika kak sovremennyy instrumentariy razvitiya biznesa / V. A. Puryskina // Uchet i kontrol'. – 2025. – № 9. – S. 37-51. – DOIhttps://doi.org/10.36871/u.i.k.2025.09.01.005. – EDN NVYVPT.
17. Tereshina, V. V. Primenenie sistem prediktivnoy analitiki i predikativnogo modelirovaniya / V. V. Tereshina // Innovacionnoe razvitie ekonomiki. – 2022. – № 5(71). – S. 243-246. – DOIhttps://doi.org/10.51832/2223798420225243. – EDN FMEHQE.
18. Francisko, O. Yu. Primenenie metodov imitacionnogo modelirovaniya v analize biznes-processov APK / O. Yu. Francisko, V. V. Osenniy // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. – 2025. – № 117. – S. 28-33. – DOIhttps://doi.org/10.21515/1999-1703-117-28-33. – EDN SEKZOR.
19. Aro, Opeyemi. (2024). Predictive Analytics in Financial Management: Enhancing Decision-Making and Risk Management. International Journal of Research Publication and Reviews. 5. 2181-2194.https://doi.org/10.55248/gengpi.5.1024.2819. URL:https://www.researchgate.net/publication/385025548_Predictive_Analytics_in_Financial_Management_Enhancing_Decision-Making_and_Risk_Management (data obrascheniya 03.10.2025).



