Risk models in banking
Abstract and keywords
Abstract (English):
The article considers banking activity as a multi-level system of financial services for households, corporate and public entities, which determines a complex and interconnected risk profile. Based on the analysis of theoretical and regulatory sources, the classification of banking risks is summarized: credit, market, non-financial and liquidity risks, as well as their transmission links that increase vulnerability in stress modes. Special attention is paid to the core of credit risk modeling, including PD, LGD, and CCF/EAD parameters, as well as methods for their estimation (from interpretable statistical models to machine learning ensembles) and their integration with macroeconomic scenarios for calculating expected/unexpected losses and capital buffers. It is shown that improving the accuracy of forecasts through automated learning methods requires strengthening the procedures for explainability, sustainability, and risk management associated with model use.

Keywords:
banking activities, risk modeling, banking risks, development cycle, and financial services
Text
Text (PDF): Read Download
References

1. Basel Committee on Banking Supervision (BCBS). Principles for the Sound Management of Operational Risk. 2011. / [Elektron.resurs] // URL:https://www.bis.org/publ/bcbs195.pdf (data obrascheniya 11.10.2025 g.)

2. Saunders A., Allen L. Credit Risk Management In and Out of the Financial Crisis. 4th ed. 2022. / [Elektron.resurs] // URL:https://books.apple.com/us/book/credit-risk-management-in-and-out-of-the-financial-crisis/id392834389 (data obrascheniya 11.10.2025 g.)

3. BCBS. Guidelines on risk data aggregation and risk reporting. 2019. / [Elektron.resurs] // URL:https://www.bis.org/publ/bcbs239.pdf (data obrascheniya 11.10.2025 g.)

4. Jorion P. Value at Risk. 4th ed. 2007. / [Elektron.resurs] // URL:https://openlibrary.org/works/OL2952926W/Value_at_Risk (data obrascheniya 11.10.2025 g.)

5. Altman E., Sabato G. Modelling Credit Risk for SMEs. 2007. / [Elektron.resurs] // URL:https://www.semanticscholar.org/paper/Modelling-Credit-Risk-for-SMEs%3A-Evidence-from-the-Altman-Sabato/db3f07b87d15eea3f9d14455537fee17153c890d (data obrascheniya 11.10.2025 g.)

6. Laeven L., Majnoni G. Loan Loss Provisioning and Economic Slowdowns. 2003. / [Elektron.resurs] // URL: https://www.semanticscholar.org/paper/Loan-loss-provisioning-and-economic-slowdowns%3A-too-Laeven-Majnoni/4fa568564c4d5968fbc04eb3968952b3f0dc1a87 (data obrascheniya 11.10.2025 g.)

7. Glasserman P., Heidelberger P., Shahabuddin P. Portfolio Value at Risk with Heavy Tails. 2002. / [Elektron.resurs] // URL:https://www.semanticscholar.org/paper/Portfolio-Value‐at‐Risk-with-Heavy‐Tailed-Risk-Glasserman-Heidelberger/65efdf22e9c6945f41aa1dcb203b194acabc50ac (data obrascheniya 11.10.2025 g.)

8. BCBS. Interest Rate Risk in the Banking Book. 2016. / [Elektron.resurs] // URL:https://www.bis.org/bcbs/publ/d368.pdf (data obrascheniya 11.10.2025 g.)

9. Cruz M. Modeling, Measuring and Hedging Operational Risk. 2002. / [Elektron.resurs] // URL:https://www.wiley.com/en-us/Modeling%2C+Measuring+and+Hedging+Operational+Risk+-p-9780471515609 (data obrascheniya 11.10.2025 g.)

10. Power M. The Risk Management of Everything. 2005. / [Elektron.resurs] // URL:https://demos.co.uk/wp-content/uploads/files/riskmanagementofeverything.pdf (data obrascheniya 11.10.2025 g.)

11. Brunnermeier M., Pedersen L. Market Liquidity and Funding Liquidity. 2009. / [Elektron.resurs] // URL:https://markus.scholar.princeton.edu/publications/market-liquidity-and-funding-liquidity (data obrascheniya 11.10.2025 g.)

12. BCBS. Basel III: The Liquidity Coverage Ratio and liquidity risk monitoring tools. 2013. / [Elektron.resurs] // URL:https://www.bis.org/publ/bcbs238.pdf (data obrascheniya 11.10.2025 g.)

13. Adrian T., Brunnermeier M. CoVaR. 2016. / [Elektron.resurs] // URL:https://www.nber.org/papers/w17454 (data obrascheniya 11.10.2025 g.)

14. BCBS. Stress testing principles. 2018. / [Elektron.resurs] // URL:https://www.bis.org/bcbs/publ/d450.pdf (data obrascheniya 11.10.2025 g.)

15. Morini M. Understanding and Managing Model Risk. 2011. / [Elektron.resurs] // URL:https://www.litres.ru/book/massimo-morini-2/understanding-and-managing-model-risk-a-practical-guide-f-31222329 (data obrascheniya 11.10.2025 g.)

16. Hand D., Henley W. Statistical classification methods in consumer credit scoring. 1997. / [Elektron.resurs] // URL:https://www.semanticscholar.org/paper/Statistical-Classification-Methods-in-Consumer-a-Hand-Henley/fa585ac49b37a801ccd1b2e49118518414c810e2 (data obrascheniya 11.10.2025 g.)

17. Thomas L., Crook J., Edelman D. Credit Scoring and Its Applications. 2002; Thomas L. Consumer Credit Models. 2009. / [Elektron.resurs] // URL:https://sciarium.com/file/120591 (data obrascheniya 11.10.2025 g.)

18. Martynova U. A. Cifrovoy banking: razvitie, vozmozhnosti, riski / U. A. Martynova // Skif. Voprosy studencheskoy nauki. – 2024. – № 5(93). – S. 667-673.

19. Rudin C. Stop explaining black box ML models for high stakes decisions. 2019. / [Elektron.resurs] // URL:https://www.semanticscholar.org/paper/Stop-explaining-black-box-machine-learning-models-Rudin/bc00ff34ec7772080c7039b17f7069a2f7df0889 (data obrascheniya 11.10.2025 g.)

20. Saunders A., Allen L. Credit Risk Management In and Out of the Financial Crisis. 2022. / [Elektron.resurs] // URL:https://www.litres.ru/book/anthony-saunders/credit-risk-management-in-and-out-of-the-financial-crisis-28304628 (data obrascheniya 11.10.2025 g.)

Login or Create
* Forgot password?