student
graduate student
The article examines the problem of a comprehensive assessment of the effectiveness of digital products and data arrays in conditions of high uncertainty and characteristic risks in the implementation of intelligent systems. The relevance of the work is determined by the rapid development of cognitive technologies in the absence of universal analysis methods that take into account both technical characteristics and economic indicators. A critical review of existing assessment approaches has been conducted, and their main limitations related to insufficient consideration of the dynamism of the technological environment have been identified. The main contribution of the research is the development of an adaptive methodology for calculating expected utility, integrating quantitative and qualitative indicators through a system of weighted parameters and probability coefficients. The proposed approach allows not only to evaluate the current performance of digital solutions, but also to predict their potential in a changing environment.
evaluation of the efficiency of AI products, automated data analysis systems, methods for determining expected utility
1. Gonka tehnologiy. Kak iskusstvennyy intellekt pomogaet biznesu [Elektronnyy resurs] // Forbes Rossiya. – URL: https://www.forbes.ru/tehnologii/354727-gonka-tehnologiy-kak-iskusstvennyy-intellekt-pomogaet-biznesu (data obrascheniya: 25.03.2025).
2. Kak iskusstvennyy intellekt ispol'zuetsya v biznese: obzor i keysy [Elektronnyy resurs] // vc.ru. – URL: https://vc.ru/marketing/105102-kak-iskusstvennyy-intellekt-ispolzuetsya-v-biznese-obzor-i-keysy (data obrascheniya: 25.01.2025).
3. Iskusstvennyy intellekt v roznichnoy torgovle [Elektronnyy resurs] // Yandeks.Dzen. – URL: https://zen.yandex.ru/media/aiqcnt/iskusstvennyi-intellekt-v-roznichnoi-torgovle-5c3c50107c705800aa422dfe (data obrascheniya: 25.03.2025).
4. Metody statisticheskogo modelirovaniya (metod Monte-Karlo) [Elektronnyy resurs] // Sibirskiy gosudarstvennyy universitet telekommunikaciy i informatiki. – URL: https://csc.sibsutis.ru/sites/csc.sibsutis.ru/files/courses/pvt/%20%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5.pdf (data obrascheniya: 14.01.2025).
5. Notes from the AI frontier: Applications and value of deep learning [Elektronnyy resurs] // McKinsey & Company. – 2018. – URL: https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-aifrontier-applications-and-value-of-deep-learning (data obrascheniya: 11.01.2025).
6. Nacional'nyy standart RF «Iskusstvennyy intellekt. Osnovnye terminy i opredeleniya» [Elektronnyy resurs] // Ministerstvo cifrovogo razvitiya, svyazi i massovyh kommunikaciy RF. – 2019. – URL: https://digital.gov.ru/uploaded/files/07102019ii.pdf (data obrascheniya: 05.02.2025).
7. Iskusstvennyy intellekt: perspektivy i vyzovy dlya biznesa [Elektronnyy resurs] / PwC Rossiya. – 2020. – URL: https://www.pwc.ru/ru/riskassurance/assets/diq-RUS.pdf (data obrascheniya: 11.12.2025).