CLUSTER-BASED ASSORTMENT OPTIMIZATION STRATEGIES IN FMCG: AN EMPIRICAL ASSESSMENT OF IMPACT ON PROFITABILITY (EBITDA) AND LOSSES IN RUSSIAN RETAIL CHAINS VITALIY BORISOVICH KOLOMIETS
Abstract and keywords
Abstract (English):
This study provides empirical validation of a cluster-based approach (CBA) for evaluating the economic efficiency (EE) of federal FMCG retail chains in Russia [1], and substantiates the application of cluster strategies (CS) for managing profitability and losses. Two CS scenarios were investigated: 1) the "Gross Margin (GM) Maximization" CS and 2) the "Optimal GM vs. Sales Turnover (ST) Balance" CS. Pilot interventions involved matrix-based store reclustering against benchmarks, replacing non-performing FRESH category SKUs with non-alcoholic/low-alcohol beverages (NALB/LAB) in refrigerated display cases (RDCs), and assessing the impact on operational and financial KPIs: • Scenario 1 (GM Maximization): Achieved significant FRESH losses reduction of 1,41 pp (>27%), but resulted in a 2,18% revenue decline for this category due to aggressive assortment reduction (~32% of FRESH SKUs). • Scenario 2 (GM vs. ST Balance): Generated substantial store revenue growth of 5,16% and GM growth of 7,57%, alongside moderate losses reduction through light assortment optimization (~17% FRESH SKU replacement). Adaptive RDC repurposing proved superior to radical reduction, maximizing ROI while preserving operational benefits. Scenario 2 is recommended for sustainable growth. Scenario 1 CS is effective as a corrective measure for high-losses stores. Flexible RDC space management to reduce "dead zones" can increase SKU turnover by up to 18,4%. However, limitations of the CBA for EE were identified regarding the projected 1,54 pp EBITDA increase (actual: 0,22–0,54 pp). The EE CBA model requires refinement in: incorporating operational costs (incl. associated CAPEX) for RDC repurposing/decommissioning; accounting for the adaptation time lag of assortment changes (up to 10 weeks for FRESH SKU delisting); incorporating cross-demand elasticity in FRESH → NALB/LAB substitutions; assessing store share within chains with complex logistics, extreme demand volatility, e-commerce services, and geographical specificities. This research establishes a new standard for integrating cluster analysis, A/B testing, and dynamic shelf-space EE management into the operational processes of large-scale retail chains.

Keywords:
FMCG retail, cluster analysis, dynamic clustering, assortment optimization, losses management, fresh produce (FRESH), operational efficiency, EBITDA, refrigerated display cases, A/B testing, empirical research, Russian retail chains
Text
Text (PDF): Read Download
References

1. Kolomiec V. B. Ocenka ekonomicheskoy effektivnosti federal'nyh FMCG roznichnyh setey v Rossii: klasternyy podhod = Assessment of the Economic Efficiency of Federal FMCG Retail Chains in Russia: A Cluster Approach // SSRN. 2024. 27 okt. URL: https://ssrn.com/abstract=5000886 (data obrascheniya: 08.06.2025). DOI:https://doi.org/10.2139/ssrn.5000886

2. Kolomiec V. B. Prinyatie resheniy na osnove ROILFL: novyy podhod k A/B-testirovaniyu dlya FMCG-riteylerov dlya soglasovaniya CAPEX s rostom sopostavimyh prodazh = ROILFL-driven decision-making: a novel A/B testing approach for FMCG retailers to align CAPEX with comparable sales growth : [elektron. preprint] // SSRN. 2025. 24 maya. URL: https://ssrn.com/abstract=5276759 (data obrascheniya: 08.06.2025). DOI:https://doi.org/10.2139/ssrn.5276759

3. Porter M. Strategiya konkurencii: Metodika analiza otrasley i konkurentov = Competitive Strategy: Techniques for Analyzing Industries and Competitors. New York : Free Press, 1998. 396 s.

4. Fildes R., Ma S., Kolassa S. Retail Analytics: Integrated Forecasting and Inventory Management for Perishable Products // Production and Operations Management. 2022. Vol. 31, № 5. P. 789–812. DOI:https://doi.org/10.1111/poms.13722 (Ssylka na DOI uslovna, t.k. v originale ne ukazan; pri nalichii DOI on ukazyvaetsya).

5. Kovalev V. E., Novikova K. V., Antineskul E. A. Klasternyy analiz prodovol'stvennyh riteylerov Rossii // Upravlenec. 2022. № 1. URL: https://cyberleninka.ru/article/n/klasternyy-analiz-prodovolstvennyh-riteylerov-rossii (data obrascheniya: 08.06.2025).

6. Katermina T. S., Makambeddzhan A. A. Analiz metodov klasterizacii dlya podderzhki prinyatiya resheniy v roznichnoy torgovle // Matematicheskie struktury i modelirovanie. 2024. № 1(69). S. 69–76. DOI:https://doi.org/10.24147/2222-8772.2024.1.69-76

7. Lavrenko A. Klasterizaciya v zadachah assortimentnogo planirovaniya v torgovyh setyah // Upravlenie ekonomicheskimi sistemami: elektronnyy nauchnyy zhurnal. 2011. № 29. URL: https://cyberleninka.ru/article/n/klasterizatsiya-v-zadachah-assortimentnogo-planirovaniya-v-torgovyh-setyah (data obrascheniya: 08.06.2025).

8. Hübner A., Kuhn H. Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management // Omega. 2012. Vol. 40, № 2. P. 199–209. DOI:https://doi.org/10.1016/j.omega.2011.05.008

9. Lavoie J. R., Daim T. Technology transfer: A literature review // R&D Management in the Knowledge Era / ed. by T. Daim. Cham : Springer, 2019. Ch. 17. P. 183–201. DOI:https://doi.org/10.1007/978-3-030-15409-7_17

10. Fildes R., Ma S., Kolassa S. Retail forecasting: Research and practice // International Journal of Forecasting. 2022. Vol. 38, № 4. P. 1283–1318. DOI:https://doi.org/10.1016/j.ijforecast.2019.06.004

11. Kolomiec V. B. Opisatel'nye harakteristiki analiziruemyh assortimentnyh matric tovarov kategorii FRESH v torgovyh tochkah roznichnoy seti - klasternyy podhod = Descriptive characteristics of analyzed FRESH product assortment matrices in retail chain outlets - cluster approach : [nabor dannyh] // Figshare. 2024. URL: https://doi.org/10.6084/m9.figshare.27083080.v1 (data obrascheniya: 08.06.2025). DOI:https://doi.org/10.6084/m9.figshare.27083080.v1

12. Kolomiets V. TT KPI data from the pilot and control groups of TT Scenario 1 - focus on Max Gross Income : [nabor dannyh] // Figshare. 2025. URL: https://doi.org/10.6084/m9.figshare.29329448 (data obrascheniya: 08.06.2025).

13. Kolomiets V. FRESH KPI data from the TT pilot and control group of Scenario 1 - focus on Max Gross Income : [nabor dannyh] // Figshare. 2025. URL: https://doi.org/10.6084/m9.figshare.29329502 (data obrascheniya: 08.06.2025).

14. Kolomiets V. KPI data from the BAN-SAN pilot and control group TT Scenario 1 - focus on Max Gross Income : [nabor dannyh] // Figshare. 2025. URL: https://figshare.com/articles/dataset/_/29329637 (data obrascheniya: 08.06.2025). (Primechanie: V ishodnom tekste ne byl ukazan DOI dlya etogo nabora, poetomu sohranen URL).

15. Kolomiets V. TT KPI data from the TT pilot and control group of Scenario 2 - focus on the balance of Gross income and RTO : [nabor dannyh] // Figshare. 2025. URL: https://doi.org/10.6084/m9.figshare.29330006 (data obrascheniya: 08.06.2025).

16. Kolomiets V. FRESH KPI data from the TT pilot and control group of Scenario 2 - focus on the balance of Gross income and RTO : [nabor dannyh] // Figshare. 2025. URL: https://doi.org/10.6084/m9.figshare.29330009 (data obrascheniya: 08.06.2025).

17. Kolomiets V. KPI data from the BAN-SAN pilot and control group TT Scenario 2 - focus on the balance of Gross income and RTO : [nabor dannyh] // Figshare. 2025. URL: https://doi.org/10.6084/m9.figshare.29332943 (data obrascheniya: 08.06.2025).

Login or Create
* Forgot password?