graduate student
This article examines the current challenges of supplying Russian industry with metal-cutting tools and tooling in the context of import substitution. It is noted that existing approaches to assessing tool costs are fragmented, focusing either on serial production costs or on the manufacturing cost of the tool itself, ignoring a comprehensive analysis of its full life cycle. It is demonstrated that ensuring cost transparency at all stages of the tool life cycle is a key factor in reducing the overall cost of the final product. The methodological basis proposed is the use of standardized approaches to calculating life cycle costs, regulated by international standards. Based on an analysis of international experience and existing life cycle models, the author formulates an approach that envisions the deep integration of tool production into customer processes at the design, serial production, and maintenance stages. Systematization and updating of data on tool performance enable the optimization of its architecture and differentiation of the product line aimed at meeting specific customer requirements while minimizing total costs.
life cycle cost, tool production, metal-cutting tool, cost, import substitution, integration, maintenance, product architecture, functional model
1. Istockiy V.V., Yudin S.V. Instrumental'noe proizvodstvo: problemy i puti resheniya Izvestiya TulGU. Tehnicheskie nauki. 2021. Vyp. 3 s.219-226
2. Lutovinov P.P., Melen'kina S.A. Optimizaciya zatrat v metalloobrabatyvayuschem proizvodstve // Organizator proizvodstva. 2020. T.28. № 1 S. 79-90.
3. Protas'ev V.B., Istockiy V.V. Sostoyanie proizvodstva sovremennogo metallorezhuschego instrumenta v Rossii // Izvestiya Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2013. Vyp. 8. S. 223-231.
4. Rasporyazhenie Pravitel'stva Rossiyskoy Federacii ot 5 noyabrya 2020 g. № 2869-r Strategiyu razvitiya stankoinstrumental'noy promyshlennosti na period do 2035 goda
5. Charuyskaya, M. A. Analiz suschestvuyuschih podhodov k upravleniyu zhiznennym CIK-lom instrumenta v promyshlennosti / M. A. Charuyskaya, N. P. Smirnov // Upravlenie i innovacionnoe razvitie predpriyatiya: novye podhody i aktual'nye issledovaniya : Materialy Mezhdunarodnoy nauchno-prakticheskoy konferencii, Moskva, 28 maya 2025 goda. – Moskva: MGTU "STANKIN", 2025. – S. 283-288.
6. Abele, E.; Dervisopoulos, M.; Kuhrke, B. (Bedeutung und Anwendung von Lebenszyklusanalysen bei Werkzeugmaschinen): Bedeutung und Anwendung von Lebenszyklusanalysen bei Werkzeugmaschinen. In: Schweiger, S. (Hrsg.) Lebenszykluskosten optimieren. Paradigmenwechsel für Anbieter und Nutzer von Investitionsgütern. 1. Aufl. Wiesbaden: Gabler, 2009, S. 51–79
7. Brenner D., Weber K., Lenz J., Westkämper E. Total Tool Cost of Ownership Indicator for Holistical Evaluations of Improvement Measures within the Cutting Tool Life Cycle// 51st CIRP Conference on Manufacturing Systems Procedia CIRP 72 (2018) 1404–1409
8. Deutsches Institut für Normung e.V., (DIN EN ISO 31051): DIN EN ISO 31051. Grundlagen der Instandhaltung (ISO 31051:2012-09), 2019-06.
9. Kühn, T. (Lebenszyklusorientierte Leistungssysteme im Werkzeugbau):Lebenszyklusorientierte Leistungssysteme im Werkzeugbau. Dissertation. Rheinisch Westfälische Technische Hochschule Aachen, Aachen, 2016.
10. Schuh, G.; Schmitt, R.; Kühn, T.; Hienzsch, M. (“Low-Cost” Tools Through Life Cycle Observation): “Low-Cost” Tools Through Life Cycle Observation. In: Procedia CIRP. 15. Jg, 2014, S. 526–530



