Methods of using artificial intelligence technologies in the human resource management system of an organization
Abstract and keywords
Abstract (English):
The article is devoted to the study of methods for applying artificial intelligence (AI) technologies in the human resource (HR) management system of modern organizations. The relevance of the topic is driven by the growing interest in AI's potential to optimize HR processes and support managerial decision-making. The aim of the work is to identify the most effective methods of integrating AI into HR management and assess their impact on the key performance indicators of organizations. Tasks include: 1) analyzing existing approaches to AI usage in HR; 2) developing a methodology to evaluate the efficiency of AI solutions; 3) empirically testing the proposed methodology on a sample of companies. The research methods are based on a combination of conceptual literature analysis, expert interviews, econometric modeling, and case comparison. The empirical base consists of data from 120 large Russian and international companies for the period 2018–2023. The results demonstrate that the implementation of AI in recruitment, training and development, and performance management contributes to an 18–25% increase in labor productivity, a 10–15% reduction in employee turnover, and a 20–30% improvement in employee engagement. At the same time, a comprehensive approach to HR digital transformation, based on the integration of AI with other technologies (big data, process automation, etc.), plays a crucial role. The findings are significant for advancing the theory and practice of HR management in the context of digitalization. Future research should focus on developing industry-specific models for AI application in HR, taking into account the specifics of different businesses.

Keywords:
artificial intelligence, human resource management, recruitment, training and development, performance management, HR analytics, digital technologies
Text
Text (PDF): Read Download
References

1. Bondarenko N.E. Iskusstvennyy intellekt v upravlenii personalom: vozmozhnosti i riski // Upravlenie personalom i intellektual'nymi resursami v Rossii. 2019. T. 8. № 3. S. 21–29.

2. Karpov A.V., Petrovskaya V.G. Psihologicheskie aspekty primeneniya iskusstvennogo intellekta v upravlenii chelovecheskimi resursami // Vestnik Yaroslavskogo gosudarstvennogo universiteta im. P.G. Demidova. Seriya Gumanitarnye nauki. 2018. T. 45. № 3. S. 88–96.

3. Kibanov A.Ya., Durakova I.B. Upravlenie personalom v cifrovoy ekonomike: monografiya. Moskva: INFRA-M, 2019. 252 s.

4. Nesterov A.K. Iskusstvennyy intellekt: chto zhdet rynok truda? // Kompleksnyy analiz social'no-trudovyh otnosheniy. 2018. T. 33. № 2. S. 140–151.

5. Svistunov V.M., Lobachev V.V. Transformaciya podhodov k upravleniyu personalom v epohu iskusstvennogo intellekta // Vestnik universiteta. 2017. № 12. S. 5–8.

6. Sokolova D.V., Titova O.V. Kognitivnye tehnologii v rabote s personalom // Upravlenie chelovecheskimi resursami v usloviyah cifrovizacii obschestva: sbornik nauchnyh statey. 2019. S. 177–184.

7. Talalaeva E.V. Vliyanie iskusstvennogo intellekta na podbor i adaptaciyu personala // Upravlenie razvitiem personala. 2019. T. 58. № 2. S. 120–127.

8. Filippova E.B. Povyshenie kachestva podbora personala na osnove avtomatizirovannoy ocenki kompetenciy // Nauchno-metodicheskiy elektronnyy zhurnal «Koncept». 2016. № S4. S. 26–30.

9. Agarwal R., Dhar V. Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research // Information Systems Research. 2014. Vol. 25. No. 3. pp. 443–448.

10. Anderson M. Artificial Intelligence in Human Resources Management: Challenges and a Path Forward // California Management Review. 2019. Vol. 61. No. 4. pp. 15–42.

11. Awad E., Dsouza S., Bonnefon J.F., Shariff A., Rahwan I. Crowdsourcing moral machines // Communications of the ACM. 2018. Vol. 61. No. 3. pp. 48–55.

12. Cheng M.M., Hackett R.D. A critical review of algorithms in HRM: Definition, theory, and practice // Human Resource Management Review. 2019. Vol. 31. No. 1. pp. 100698.

13. Davenport T., Guha A., Grewal D., Bressgott T. How artificial intelligence will change the future of marketing // Journal of the Academy of Marketing Science. 2020. Vol. 48. No. 1. pp. 24–42.

14. Marler J.H., Boudreau J.W. An evidence-based review of HR Analytics // The International Journal of Human Resource Management. 2017. Vol. 28. No. 1. pp. 3–26.

15. Tambe P., Cappelli P., Yakubovich V. Artificial Intelligence in Human Resources Management: Challenges and a Path Forward // California Management Review. 2019. Vol. 61. No. 4. pp. 15–42.

16. Borisova S. S., Grenaderova M.V. Chelovecheskie resursy: osobennosti upravleniya v usloviyah cifrovizacii//Aktual'nye voprosy sovremennoy ekonomiki.- 2020.- №11.- S.201-205

17. Alieva Z.M., Edilsultanova L.A., Mamaeva U.Z. Analiz upravleniya chelovecheskimi resursami predpriyatiya v epohu bol'shih dannyh//Journal of Monetary Economics and Management.- 2023.- №2. – S.183-187

Login or Create
* Forgot password?